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ABSTRACT 

Fiber-hybrid reinforced polymer composites have proven to be an innovative design 

solution in structural application across the industry and sectors such as the Aerospace, 

Automotive, Sports, and Energy industry, because they have experimentally proven to be 

able to enhance damage tolerance compared to non-hybrid solutions. Computational 

micromechanical models, in particular two- and three-dimensional repeating unit cells 

(RUCs) with periodic microstructures are developed in Abaqus/Standard, a commercial 

FEA software, to model the micromechanics of unidirectional natural synthetic fiber-

hybrid reinforced polymer composites with intralaminar hybridization. The aim of the 

study is to understand the lamina properties and micro stress fields of such when in-

plane and out-of-plane tensile, and shear loadings are applied to the composite lamina. 

Throughout the study we will explore the differences between two- and three-

dimensional RUCs and compare against commonly used analytical models, with the use 

of Python, programming language. Specifically, Chamis, Rule of Mixture, and modified 

Rule of Mixture 
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NOMENCLATURE 

𝑖, 𝑗, 𝑘 As subscripts Vector and tensor indices  

1, 2, 3 As subscripts Longitudinal, transverse 

𝑓,𝑚, 𝑖 
As subscript/ 

superscript 
Fibre, matrix, and interphase 

𝐸 [𝐺𝑃𝑎] Elastic modulus 

𝐺 [𝐺𝑃𝑎] Shear modulus  

𝑣 [-] Poisson’s ratio 

𝑅 [𝑚] Radius 

𝑈 [𝑚] Distance, Displacement 

ε [-] Strain  

V [-] Volume fraction 

A [𝑚2] Area 

𝐹 [𝑁] Force 

𝛤 [𝑚2] Boundary 

𝛺 [𝑚3] Volume 

𝒖 [𝑚]  Displacement vector 

𝑢𝑖  [𝑚] Displacement vector components along 𝑖 

𝑥1  Coordinate axis along longitudinal direction  

𝑥2, 𝑥3  Coordinate axis along transverse direction 

𝝈 [𝑀𝑃𝑎] Stress tensor 

𝜺 [-] Strain Tensor 

[𝐶] [𝑀𝑃𝑎] Compliance tensor 

𝑁𝑖 [-] Nodes 

̂  [𝑀𝑃𝑎] Homogenised/macro 

𝝈 [𝑀𝑃𝑎] Micro (local) stress 

𝜎𝑖𝑗  [𝑀𝑃𝑎] Micro (local) stress components along 𝑖, 𝑗 

𝜎𝑛 [𝑀𝑃𝑎] Normal stress at the fibre-matrix interface 

𝜏𝑛𝑡 [𝑀𝑃𝑎] Shear stress at the fibre-matrix interface 

𝐿 [𝑚] Width of RUC 

𝐻 [𝑚] Height of RUC 

𝑡 [𝑚] Thickness of RUC 
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τ [𝑁] Traction force 

𝜌 [𝑔/𝑐𝑚3] Density 

𝒏 [-] Unit normal vector (surface normal) 

〈 〉  Volume average 
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GLOSSARY  

𝑃𝑀𝐶 – Polymer Matrix Composite 

𝑀𝑀𝐶 – Metal Matrix Composite 

𝐶𝑀𝐶 – Ceramic Matrix Composite 

𝑁𝐹 – Natural Fibers 

𝐻𝐶 – Hybrid Composite 

𝑃𝐵𝐶 – Periodic Boundary Condition 

𝑅𝑈𝐶 – Repeating Unit Cell 

𝑅𝑉𝐸 – Representative Volume Element 

𝑅𝑂𝑀 – Rule of Mixture 

𝑅𝑂𝑀𝑚 – Modified Rule of Mixture 

𝐶ℎ – Chamis 

𝐹𝐸𝐴 – Finite Element Analysis 

𝐹𝐸𝑀 – Finite Element Method 

𝑈𝐷 – Unidirectional 
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1 INTRODUCTION 

Experimental data is crucial for both developing and validating models, yet it comes with 

inherent limitations such as cost, complexity, and the challenge of replicating certain 

geometries. The advent of commercial software for structural analysis, commonly known 

as Finite Element Analysis (FEA), has revolutionized the study of complex components. 

FEA yields representative results for materials and structures, albeit with computational 

constraints in terms of power and time. [30] 

In modelling composite materials, one approach has been employed, Repeating Unit Cells 

(RUCs), in both two- and three-dimensional models, with diagonal fiber packing 

arrangement [24]. This paper focuses on polymer-matrix composites reinforced with 

natural and synthetic fibres, involving hybridization at the microscale to derive 

macroscopic material properties through homogenization. [5] 

Polymer-matrix composites have demonstrated remarkable strength-to-weight and 

stiffness-to-weight ratios, offering versatile opportunities for tailoring material 

properties through hybridization. This versatility extends across various sectors and 

structures, making them increasingly attractive for diverse applications. [5][6] 

However, alongside their advantages, these single fiber composites also present 

drawbacks such as fragility and poor damage tolerance and repairability, which are 

undesirable traits. 

In recent years, the modelling of fiber hybrid composites has witnessed the adoption of 

different strategies based on the scale of the composite considered, including macro, 

meso, and micro-scale approaches. This trend is exemplified by the utilization of glass 

fibres as thin-wall tubes to replace conventional metals like aluminium. This substitution 

aims to reduce costs and weight, thereby enhancing operational efficiencies without 

compromising mechanical properties. [26] 

The study in this paper entails a micromechanical investigation of fiber-hybrid 

composites. It delves into the use of 2D and 3D Repeating Unit Cells, discussing their 

advantages and limitations. The simulation process is thoroughly documented, 

encompassing considerations of periodicity and boundary conditions applied to the 

models under study. 
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In conjunction with computational models, the paper employs analytical models, Rule 

Mixture, modified Rule of Mixture and Chamis model for validation. It presents and 

discusses the behaviour of these models compared to the Repeating Unit Cells, offering 

insights into their efficacy. 

1.1 CONTEXT 

1.1.1 Composites Materials 

Many materials, whether they are artificially produced or found in nature, can be 

classified as composites. These materials are typically composed of two distinct 

components. Composites are the outcome of combining two different materials, and this 

combination results in an improved design and enhanced mechanical properties when 

compared to the individual constituents tested separately. It is commonly recognized that 

within composites, one of the components, referred to as the reinforcement, possesses 

characteristics such as stiffness, discontinuity, and strength, often taking an elongated 

form. In contrast, the second component, known as the matrix, is typically less rigid, 

weaker, and extends uniformly throughout the composite material. It's important to note 

that due to chemical interactions between these two constituents, a new phase, known as 

the interphase, may develop at the interface where both constituents come into contact. 

As illustrated in Figure 1, a cross-section of a composite material allows for the 

observation of the reinforcement embedded within the matrix, including the presence of 

the interphase. 

For instance, wood consists of a cellulose fiber, as reinforcement, which is embedded in 

lignin, as matrix [9]. Regarding the properties of a given composite, factors such as 

geometry, properties of the individual materials and the distribution of each constituent 

across the plane will take an important role on the properties of the material [26]. Due to 

the distribution of the constituents throughout the composite, as mentioned before, often 

fibres tend to be elongated due to their crystal structure, many composites will show 

anisotropy as the fiber and matrix will both depend on direction and position in a fixed 

system of coordinates [11]. Anisotropy is defined as the change or differing in physical 

and mechanical properties when different orientations are considered across the 

composite, whereas isotropy demonstrates consistent properties of the composite over 
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various planes. Therefore, the behaviour of anisotropic composites when load is applied 

may vary depending on orientation of such force.  

 

Figure 1: Distribution of Constituents in a composite material [26]. 

Composites can present different volume fractions, which is considered one of the most 

important parameters to follow up when studying a given composite. This refers to the 

ratio between reinforcement, matrix, and interphase that a material possess. This can be 

represented in similar manners depending on the number of phases a composite 

possesses by the Equation (1). 

𝑉𝑓 + 𝑉𝑚 + 𝑉𝐼 = 1 

 

(1) 

Where 𝑉𝑓  – is the volume fraction of the reinforcement or fiber, 𝑉𝑚  – is the volume 

fraction of the matrix and 𝑉𝐼  – Represents the volume fraction of the interphase. It is 

important to note that the sum of these values is 1 which account for the 100% of the 

volume of a given composite. In addition, if the composite in question does not possess 

an interphase, then 𝑉𝐼 is equal to zero. 

The volume or weight fraction will determine how homogeneous or heterogenous the 

composite is, and it follows, the more uniform the fibrous constituent is across the 
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composite, the more homogeneous the material, and vice versa. Thus, heterogeneous 

composite can present disadvantages such as structural failure in areas where 

reinforcement is absent or scattered.  

Revisiting our prior discussion regarding wood, this composite material exhibits both 

anisotropy and a consistent structure, properties that have been harnessed by humanity 

for millennia, dating back as far as 10,000 years ago. These properties allow the wood to 

provide significant strength along the axis cellulose fibres. Axis that is often shared with 

the trunk or branch axis, instead of, throughout the transverse direction of the wood [9]. 

Therefore, a trunk will be able to withhold a significant load across its axial direction, 

where the stress will be distributed across of such axis, acting as a cantilever, rather than 

throughout the trunk’s thickness. 

Modifying the physical characteristics of a particular composite to meet specific 

requirements and deviate from traditional approaches offers numerous benefits to the 

industry, shown in Figure 2. This includes the enhancement of material properties, 

customization of composite performance, weight reduction, and consequently, 

improvements in the strength-to-weight ratio and cost-effectiveness. Hence, the 

development of synthetic composites, often referred to as man-made composites, 

necessitates the need for modelling and testing to assess failure modes and define the 

properties of various hybrid combinations.  

 

Figure 2: Comparison between monolithic materials (Aluminium & Steel) vs Composite 

materials [8]. 
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1.1.2 Applications 

Modern Composites are used across a wide range of engineering disciplines due to their 

desirable physical, mechanical, electrical, and thermal properties. Through history 

different applications has been discovered for the use of composite. For example: In the 

Aerospace industry, composite materials such as epoxy/carbon and titanium/graphite 

encompass around 50% of Boeing 787’s weight [26].  

1.1.3 Overview of Composite Analysis 

In STEM field engineering have developed a way to facilitate the analysis and 

representation of physical and mechanical properties such as Young Modulus of 

elasticity, Poisson’s ratio and thermal expansion coefficient that occurs in a specific point 

in a material. This has been done by setting a boundary within the structure in order to 

separate the structure from the material. A good example of this would be a beam of 

aluminium, when subjected to analysis of its properties, such as flexural rigidity, both the 

shape of the structure and the property of aluminium are accounted for, shown in 

Equation (2). More specifically, moment of inertia, 𝐼, is exclusive from the shape of the 

given beam, while 𝐸 (Young’s Modulus) is provided from the material of choice, for this 

case, aluminum (70 GPa). 

𝐷 = 𝐸𝐼  

 

(2) 

The discussion above remains relevant to the study as an internal boundary will be 

required in order to demonstrate closely the arrangement and displacement of both 

reinforcement, matrix, and the interphase in between when a load is applied. This is ideal 

as each constituent can be analysed as continua, which allows the use of continuum 

mechanics, and account for their respective properties, which in combination to the 

general arrangement of the constituents together, will demonstrate the general 

behaviour of the composite in use. 
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1.1.4 Classification of Composites 

Composites are classified in regard to 2 different aspects, the first one is with respect to 

the matrix constituent, and the second with respect to the reinforcement.  

Moreover, within the matrix classification, the types of composites are characterized by 

the matrix of choice, thus, the following 3 categories: 𝑃𝑀𝐶 – polymer matrix composites, 

𝑀𝑀𝐶  – metal matrix composites, and 𝐶𝑀𝐶  – ceramic matrix composites. In the other 

hand, Reinforcement composites are classified by the following list of aspects: continuous 

fibres, discontinuous fibres, also known as whiskers, or textile, which refers to the pattern 

in which fibres were arranged/braided within the yarn [2]. Yarns in composites are 

continuous length of interlocked fiber and matrix, that facilitates the sewing of lamina. 

For instance, the common ways of braiding fiber are the following: Coiled into a helix, or 

Tubular – continuous and consistent fibres from one end of the yarn to the other. In 

Figure 3, it is possible to observe the influence in Young Modulus of elasticity of the use 

of different matrix constituents ( 𝑃𝑀𝐶 , 𝑀𝑀𝐶 , and 𝐶𝑀𝐶 ) for composites, in both 

longitudinal orientation (L) and Transverse orientation (T) for anisotropic composites. 

Figure 3: Young’s Modulus of common PMC, MMC, and CMC isotropic 
composites, and in both Longitudinal and Transverse directions for carbon 

fiber composites that are anisotropic [2]. 
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1.1.5 Environmental Impact 

As mentioned before, composites have improved quality and life span of structures across 

the different engineering disciplines throughout the world. By 2000, it was estimated that 

the production of composites materials was about 7 million tons within the various 

industrial sectors. Even though the composites reduce fuel consumption on aircrafts and 

automobiles, due to their reduced weight, or improve the resistance to larger loads in 

structures, they possess a treat to the environment as composites present a challenge 

during its recycling. Individual materials within the composites have been recycled 

efficiently, but composites remained an exception. This occurs due to the complexity of 

the structure, as the composites have to be recycled accounting for both the matrix and 

reinforced constituents that present inherent heterogeneity and complex structure. 

Down recycled – the use of waste materials to produce a material inferior to the original, 

has been the possible recycle method for composites material, but this method introduces 

a new challenge as extensive fuel is consumed for a return of little material recovered, for 

example: fibres. 

Thus, the advances of recycling composites are promising, the methods inherently 

present high costs and lower quality, therefore the introduction of natural fiber 

reinforced composites such as Basalt and Flax, branching the categories of composites 

and bringing a more sustainable opportunity for the industry. In the past 2 decades, a 

promising eco-friendly alternative to conventional matrix constituents called geo-

polymers. These polymers are capable of improving both fracture toughness and flexural 

strength, in addition to, to their ability to retain 𝐶𝑂2 emissions. 

1.1.6 Advantages and Limitations 

As mentioned before, composites present different advantages in comparison to pure or 

monolithic materials such as steel or aluminium. More specifically, regarding their higher 

strength, stiffness, fatigue resistance, lower density. In addition, these composites can be 

designed for specific situations where there is a stronger wear or corrosion resistance, 

therefore, their adaptability. Regarding their structural composition when directly 

compared to monolithic materials, the parameter to take into consideration is the weight-

to-strength ratio, which is usually seen as the requirement to perform the same task as a 

monolithic material but reducing the weight of the structure by a given percentage of 



24 
 

lesser weight. Despite the composite’s advantages across multiple areas, they possess 

various limitations when different aspects or scales are considered. 

Composites can be tested and studied across different scales, moreover, Macro-scale, 

Mesoscale and Micro-scale in order to determine failure modes and characterization. 

Throughout this study, the focal point will be regarding the microscale, and therefore, the 

micromechanics of the composites.  

1.2 MICROMECHANICS 

The microscale of a composite ranges between millimetres (mm) to micrometre (µm), 

where fibres can be observed, and consequently the matrix functioning as a ‘glue’ for the 

fibres. Again, fibres tend to contain low fracture toughness, and therefore, the use of a 

ductile matrix that facilitates the transfer of stresses across the structure of the composite 

and dissipate energy. Ultimately, the ability of the matrix to transfer the stresses of an 

applied load prevents the failure of the structure in different locations. 

2 LITERATURE REVIEW 

2.1 NATURAL FIBERS IN POLYMER COMPOSITES 

Natural Fibers (NF), also known as plant, animal, or mineral fibres, are expanding rapidly 

as they come with abundant advantages regarding their environmental impact, 

availability, cost, and energy required for production. Additionally, these fibres possess 

valuable mechanical and physical properties such as reduced weight, high resilience 

against wear and tear, and a high specific modulus. Similarly, natural fibres have some 

significant drawbacks in comparison to synthetic fibres such as carbon that is commonly 

used due to their composition, as they are constructed from materials prompt to moisture 

like lignin and cellulose, which are found on trees, pectin, and waxy, causing a weaker 

bond between the polymer matrix and the natural fibres. This moisture can overshadow 

the mechanical properties of the fiber as the fiber swells from the ineffectiveness of the 

interphase, due to chemical reactions between reinforcement and matrix, at conveying 

the stresses, and ultimately generate micro-cracks [14]. In Table 1, both advantages and 

drawbacks of the NF composites have been listed for general reference.  
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Table 1: Advantages and Drawback of Natural Fibers [14]. 

Advantages Drawbacks 

• Low specific weight produces greater 

specific strength and rigidity than glass 

• Lower strength, particularly impact 

strength 

• Renewable resources and production 

need little energy and emit little CO2 

• Variable quality affected by climatic 

conditions 

• Low-cost production with low 

investment 

• Insufficient resilience to moisture, 

which results in fibre swelling 

• Processing is gentle, there is no tool 

wear, and there is no skin irritation 

• Temperature limit placed on the 

manufacturing procedure 

• Electrical resistance is high • Reduced durability 

• Excellent thermal and acoustic 

insulation qualities 

• Fire resistance is poor 

• Biodegradable • Inadequate fibre/matrix adhesion 

• Thermal recycling is possible • Variations in prices brought about by 

the outcomes of harvests or by 

agricultural politics 

 

The relevant parameters to consider during the testing of the natural fibre composites 

are the tensile strength, the flexibility and elasticity, wicking or moisture absorption, 

thermal properties, chemical resistance, UV resistance and Biodegradability. Though, 

despite the recognition of the different parameters, the study will focus specifically on 

the homogenised properties the composites porsses and the behaviour of such during 

transverse loading. 

2.2 HYBRID COMPOSITES 

Hybrid composites is the combination of fibres or matrix constituents to achieve different 

and improved composites, with superior physical and mechanical properties. Combining 

the natural fibres and matrix constituents with superior strengths can ultimately 

counteract drawbacks mentioned in previous section [14]. 
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In the realm of fiber-hybrid composites, three main configurations are worth considering, 

as depicted in Figure 4. The first configuration, illustrated in Figure 4(a), is interlayer 

fiber-hybrid composites, which is not only the most economical but also the simplest 

among the three. It involves stacking layers of different fibres on top of each other. 

Figure 4(b) showcases intralayer fiber-hybrid composites, where two distinct fibres are 

combined within the same layer. In this setup, the yarns of these different fibres are 

interwoven to create a fabric. It's worth noting that a configuration with parallel yarns of 

different fibres is also a viable option within the intralayer approach. 

The third configuration, which is of primary relevance to this study, is the intrayarn 

configuration, as depicted in Figure 4(c). In this case, different fibres are mixed within the 

same yarn and are assumed to be transversely isotropic, thus cylindrical. In addition, it is 

assumed no debonding in the interface between the fiber and the matrix. This 

configuration is considered the most complex of the three [20]. 

 

Figure 4: Three main hybrid configurations: (a) Inter-layer (b) Intra-layer, and (c) Intra-

yarn [20]. 

More specifically, these hybrid composites can consist of either a combination of  various 

fibres and one matrix phase, a fibre of choice allocated within different matrix phases, or 

a combination of different fibre phases and various matrix phases. Despite the wide range 

of combination, the engineers interest remains in natural composites with one matrix 

phase and various natural fibres as the qualities of such fibres can be balanced by 

overshadowing the inferior qualities of a fibre by the superior qualities of the other fibre 

in specific properties, thus, the use of two fibres remains approved. Hybrid Composites 

can be found in applications like plastic tanks, automobile and aviation parts, and 

construction components [14]. Common natural fibres are aramid, carbon, and glass.  
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Hybridization can be used to reduce weight as pure single fibre composites can be 

expensive depending on the higher-quality fiber of choice, and therefore the combination 

of low- and high-quality fibres for the same component without compromising the 

performance and satisfy its purpose. This can result in a significant reduction of the price 

of parts. For instance, exchanging carbon fibres for cheaper glass fibres within a laminate 

can reduce costs by a significant margin [20]. On the other hand, hybridization can be 

used to enhance maximize performance by combining high-quality fibres for critical 

applications such as spacecraft parts where performance will becloud price as human life 

may present safety risks.  

Regarding fibres, not only dissimilar fibres but similar fiber with other physical 

properties such as fibre’s dimensions may affect the performance of the reinforcement. 

For instance, carbon fibres may be found with different diameters as this will impact the 

fibre’s stiffness [14]. 

2.3 PERIODIC BOUNDARY CONDITIONS AND BOUNDARY CONDITIONS 

The concept of boundary conditions is often downplayed and simplified when teaching, 

but in reality, boundary conditions play a crucial role in not only determining solutions 

but also in shaping the methods used to solve equations [13]. 

Various micromechanical techniques have been developed to analyse and predict the 

overall behaviour of composite materials. Energy variational principles have been used 

to establish upper and lower bounds for the elastic modulus, as demonstrated by Hashin 

and Shtrikman in 1963 and Hashin and Rosen in 1964. Additionally, Whitney and Riley, 

in 1966, employed an energy balance approach and elasticity theory to derive analytical 

expressions for the elastic modulus of composites. However, it's worth noting that 

extending this method to viscoelastic, elastoplastic, and nonlinear composites is a 

challenging task [24]. 

In 1991, Aboudi introduced a comprehensive micromechanical theory that was centred 

on the examination of interacting periodic cells. This theory enabled the prediction of the 

overall behaviour of both elastic and inelastic components within composite materials. 

Aboudi's approach involved applying homogeneous boundary conditions to the 

Representative Volume Element (RVE) or unit cell models. Between 1987 and 1996, 

several researchers, including Needleman and Tvegaard, Sun and Vaidya, and Suquet, 
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pointed out that the use of 'plane in plane' boundary conditions had certain limitations 

[16][18][19]. Specifically, these conditions led to over-constrained boundary conditions 

and violated stress/strain boundary conditions [24]. 

The micromechanical models mentioned earlier are typically known as mechanical or 

engineering models. In contrast, a mathematical model called 'asymptotic 

homogenization theory' was introduced in the 1970s as an alternative approach. 

Pioneers in this mathematical model include Suquet (1987), Benssousan et al. (1978), 

Sanchez-Palencia (1980), and Bakhvalov and Panasenko (1984) [6][7][17]. This 

asymptotic homogenization theory explicitly incorporated periodic boundary conditions 

when modelling both linear and non-linear composite materials. As a direct result, it was 

demonstrated by Suquet in 1987 that distinctive patterns of deformation do not occur 

along planar boundaries after deformation. Following this, in 1991, Guedes and Kikuchi 

investigated the utilization of the finite element method (FEM) for solving issues related 

to composite materials [24]. 

In 1999, Hori and Nemat-Nasser showed that the anticipated effective elastic modulus 

could change depending on the conditions applied to the boundary, denoted as 𝐵ẟ, of a 

unit cell. Consequently, the utilization of periodic boundary conditions is favored as it 

provides more precise results, particularly when applied in the context of hybrid theory 

[24]. 

Periodic boundary conditions (PBC) involve replicating a 3D modelled 'box' representing 

the composite, often referred to as a unit cell, endlessly throughout space. This can be 

visualized as a periodic arrangement of a repeated unit cell (RUC). When a cell, as 

depicted in the figure, moves beyond the boundary, it reappears on the opposite side of 

the 'cloned box,' following the same direction and displacement. 
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Figure 5: 2D periodic boundary condition cell of a randomly distributed RVE [3]. 

The Periodic Boundary Condition is governed by the equations (3)(4)(5). The equations 

are capable of representing the displacement or strain that arises within the framework 

of the periodic boundary condition and maintaining distance ∆𝒙 constant between the 

nodes of opposite edges. 

𝑢𝑖(𝒙 + ∆𝒙) − 𝑢𝑖(𝒙) = 𝜀𝑖𝑗∆𝑥𝑗     

 

(3) 

 

𝑢𝑖(𝒙 + ∆𝒙) = 𝑢𝑖(𝒙) (4) 

 

τ(𝒙 + ∆𝒙) = −τ(𝒙) 

    

(5) 

In Equations 3-5, 𝑢𝑖  – is the displacement at 𝒙, 𝜀𝑖𝑗  – signifies the applied macro-strain 

component to the RVE, 𝒙 +  ∆𝒙 and 𝒙  – are position vectors of opposite unit cell’s faces  

τ – denotes the traction force, and 𝐵ẟ
1 – is boundary chosen with its normal oriented in 

the ‘1’ direction, illustrated in figure 6. 
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Randomness in the distribution of fibres within a transverse cross-section of actual 

composites is a common occurrence. However, when modelling these materials with 

periodic boundary conditions, this randomness can introduce complexities. The 

approach called falsified periodicity has been proposed as a solution to this issue, but it's 

essential to note that this approach is fundamentally incorrect, and we will explore this 

matter further in the Section 2.4. 

2.4 REPRESENTATIVE VOLUME ELEMENTS (RVES) VS REPEATING UNIT CELLS 

(RUCS) 

An essential aspect of multiscale modelling involves defining the appropriate 

representative volume. When this volume is precisely defined as a mathematical domain 

with specific dimensions, it is referred to as the Representative Volume Element (RVE). 

The primary objective is to make the RVE closely mirror the material's behaviour at a 

larger length scale, ensuring both the homogeneity and uniformity of the composite, 

whether on a physical or statistical basis. In other words, the RVE represents a finite-

sized portion of the material at a lower length scale, which is considered mathematically 

infinitesimal at larger length scales [13]. 

The characteristics of the materials under consideration, such as heat capacity and 

Young's modulus in the fiber direction of unidirectional (UD) fiber-reinforced 

composites, are primarily influenced by the volume fraction of the selected constituents 

Figure 6: 2D periodic boundary condition cell of a randomly distributed RVE, 
with set coordinate directions and notation [3]. 
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as a high-volume fraction of fibres will provide a more brittle composite, while low fiber 

fractions will provide less strong composites. For properties like Young's modulus, which 

rely on the statistical uniformity of transverse fibres in unidirectional composites, it may 

be necessary to have larger material volumes for the Representative Volume Element 

(RVE) to be considered truly representative of the composite. 

In the context of the study and at smaller length scales, researchers often define a unit 

cell, which serves as a specific type of RVE. This unit cell is designed based on the regular 

and repeating structure of the material, where "regularity" pertains to the geometric 

arrangement of the composite's fibres and matrix phase. RVEs are typically used to 

address issues associated with random structures, such as those found in unidirectional 

fiber-reinforced composites at the microscale, as illustrated in Figure 7.  

When dealing with the challenges of falsified periodicity in randomly distributed fibres 

within real composites, complexities arise. As per the definition of the Representative 

Volume Element (RVE), it should accurately represent and retain key characteristics, 

such as randomness, which can be compromised when simplifying the RVE for ease of 

analysis. 

Figure 7: Random fibre distribution over the transverse cross 
section of a real unidirectional composite [13]. 
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As mentioned earlier, at smaller length scales, Periodic Boundary Conditions (PBCs) may 

be introduced, but this necessitates adjusting the boundaries to mimic periodicity. This 

adjustment involves duplicating all the features truncated by the boundary on the 

opposite side, as depicted by the darker circles in Figure 8(b). However, this previous 

approach can undermine the volume fraction of the composite constituents, thereby 

failing to preserve the composite's essential characteristics. 

Figure 8(e) exemplifies the issues with falsified periodicity, where repeating Figure 8(b) 

across the space results in overlapping, which, again, affects the volume fractions of 

constituents. To address this, Figure 8(c) demonstrates how truncated features that 

happen to overlap are managed through the following criteria: existing features are 

artificially relocated to free space, overlapping features are either deleted or prevented, 

as shown in Figure 8(c). When this process is repeated periodically, it generates Figure 

8(f), where there is no overlapping, and the volume fraction is preserved. It's important 

to note that when truncating the features along the boundary of Figure 8(c), an RVE 

emerges, as illustrated in Figure 8(b) [13]. 

 

Figure 8: Falsified periodicity in RVEs [13]. 

As mentioned before a unit cell (UC) is a portion of material at its lower length scale which 

reproduces all other parts of the material through appropriate symmetry 

transformations, so that the UC and its images fill up the space the material occupies in 
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exactly the same way as the original material without leaving gaps or causing overlaps, 

which causes regularity across the structure of the material. This involves asserting the 

correct interpretation of symmetries present in the structure. 

As RVE may require larger volumes to capture the essence of the micromechanics of a 

given composite and rise computational time, and often this will not ensure it is rightly 

representative. RUC can be modelled smaller length scales, and a periodicity condition 

can be applied to it in order to generate the overall structure of the composite which can 

reduce the modelling time significantly. Shown in Figure 9, it is possible to locate both the 

RVE and the RUC. Here the RUC is represented by size 𝑑, while 𝐷 represents the size of 

the RVE. It is worth noting that if the ratio 𝑑/𝐷 is much less than 1, then the RVE will 

require plenty RUCs in order to represent an inherent heterogeneous composite as 

homogeneous. 

 

Figure 9: RVE and RUC dimensions [1]. 

RUCs can present idealized organization of the constituent within the cell to provide 

homogeneity across the materials when repeated periodically, and these cells possess 

different shapes, often used are the following: square, and hexagonal shape. 
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Figure 10: (a) Square and (b) Hexagonal packing of a 2D RUC. 

The primary distinction between the two shapes lies in their spatial arrangement. 

Illustrated in Figure 11, square packing results in fibres being situated at inherently 

varying distances from the centre of each fiber to its surroundings. Specifically, diagonally 

positioned surrounding fibres are farther away compared to those located vertically or 

horizontally due to the application of the Pythagorean theorem. Consequently, this 

arrangement lacks isotropic transverse properties. In contrast, the hexagonal shape's 

unit cell generates fibres with consistent spacing to every surrounding fiber, thereby 

ensuring transverse isotropy. 

2.4.1 Selection of the shape 

Shape of the unit cell is dictated by microstructure of the composite in order to represent 

the characteristic of such for both a realistic RVE or a reasonable RUC idealization. 

Regarding an Idealized model, some general considerations are required to choose the 

appropriate shape from Figures 10. For UD composites, where fibres are located 

randomly across the yarn, a hexagonal packing would represent the randomness as 

idealistic as a square packing. However, for transversely isotropic composites with fibres 

like basalt and E-Glass, the random distributed fibres across the transverse plane will 

remain isotropic, and hexagonal packing will be more representative than a square 

packing. For 2D shapes Abaqus is not able to capture axial shear, therefore the use of 3D 

shapes can provide a solution in the analysis of axial parameters [1]. 
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2.5 ANALYTICAL MODELS  

In this section, numerous micromechanical models will be discussed and evaluated. It is 

important to note that each of these models relies on specific assumptions that hold true 

for particular types of composite structures. We will outline the assumptions inherent to 

each model, as well as their respective advantages and drawbacks [21]. 

In the context of micromechanical model analysis, certain fundamental principles are 

introduced. To begin, the composite material is assumed to exhibit linear elasticity and 

possess transverse isotropy in the unidirectional (UD) plane. Additionally, the fiber is 

regarded as transversally isotropic, while the matrix phase is assumed to be isotropic in 

all directions. In terms of composite properties, there are five distinct independent 

properties:  𝐸1  as the axial modulus and 𝐸2  for the transverse modulus. 𝐺12  and 𝐺23 , 

representing the axial and transverse shear modulus of the fiber. 𝑣12  as the in-plane 

Poisson ratio. [21] 

Thus, 𝐸1
𝑓
, 𝐸2

𝑓
, 𝐺12

𝑓
, 𝐺23

𝑓
 and 𝑣12

𝑓
. The superscript ƒ denotes fiber and for superscript m, as 

the matrix phase, goes as followed: 𝐸𝑚, 𝑣𝑚 and 𝐺𝑚, where 𝐺𝑚 is: 

𝐺𝑚 =
 𝐸𝑚

2(1 + 𝑣𝑚)
 

 

(6) 

Another way to define a composite material is through the volume fraction 𝑉𝑓 , as 

described by equation 1. However, an alternative approach is to account for the void 

volume fraction, representing the absence of material, denoted as 𝑉𝑣. 

2.5.1 Analytical models based on Rule of Mixture 

Rule of Mixture is an intuitive approach for the homogenization of composites that’ has 

become popular due to its simplicity. This simplicity comes with assumptions that may 

not be favourable, and thus the different models derived from it, to try and correct this 

for different approaches. For simple geometries these models can be very practical. Thus, 

a description  below is provided for each model derived from ROM [21]. 

2.5.1.1 Rule of Mixture (ROM) 

The Rule of Mixture relies on a straightforward solid mechanics analysis, assuming that 

the fiber and matrix can be modelled either in parallel or in series, as depicted in Figure 

X, depending on the applied load [21]. However, this approach inherently results in a 
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limited representation of the transverse plane of the composite material. The governing 

equations for the engineering constants are as follows. 

 

Figure 11: Rule of Mixture Parallel element assumption. 

𝐸1 = 𝐸1
𝑓
 𝑉𝑓 + (1 − 𝑉𝑓)𝐸

𝑚 

 

(7) 

𝑣12 = 𝑣12
𝑓

 𝑉𝑓 + (1 − 𝑉𝑓)𝑣
𝑚 

 

(8) 

𝐸2 =
𝐸2

𝑓
𝐸𝑚

𝐸2
𝑓
(1 − 𝑉𝑓) + 𝐸𝑚𝑉𝑓

 

 

(9) 

𝐺12 =
𝐺12

𝑓
𝐸𝑚

𝐺12
𝑓
(1 − 𝑉𝑓) + 𝐺𝑚𝑉𝑓

 

 

(10) 

2.5.1.2 Modified Rule of Mixture (ROMm) 

A modified Rule of Mixture (ROMm) is proposed to enhance parameter adjustment for 

better alignment with experimental data. This adjustment involves introducing an 

experimental constant ξ, which, when set to 1, makes ROMm equivalent to the 

conventional Rule of Mixture (ROM), specifically for the parameters 𝐸2 and 𝐺12. ROMm, 

akin to the Halpin-Tsai model, incorporates the Volume Fractions of the fibers, with the 

added capability of modifying the ratio between the matrix and fibers. In terms of its 

assumptions, ROMm utilizes ROM for estimating 𝐸2 and 𝐺12, while the Chamis (Ch) model 

is employed for estimating 𝐺23, albeit with 𝑉𝑓 utilized instead of √𝑉𝑓 [21]. The governing 

equation for 𝐺23 is: 

𝐺23 = 𝐺𝑚

(

 
 1

1 + ξ𝐺23
[(

𝐺𝑚

𝐺23
𝑓 ) − 1]𝑉𝑓

)

 
 

 

(11) 
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𝑣23 = (
𝐸2

2𝐺23
) − 1 

(12) 

2.5.1.3 Chamis (Ch): 

The proposal involves considering void impact on equivalent properties and adopting a 

nonlinear effect of fibre volume fraction on transverse properties. If microstructural 

voids are neglected (𝑉𝑣 =  0), the Chamis model closely resembles the Rule of Mixture 

with some differences in parameter estimation. 

Chamis introduced an inverse modelling approach, where laminate properties are 

measured first and then used to calculate constituent properties. This method helps avoid 

issues with fibre property measurement but introduces errors from the micromechanical 

model. An inverse methodology is also suggested. 

𝐸1 = 𝐸𝑚 + (1 − 𝑉𝑣)𝑉𝑓(𝐸1
𝑓

− 𝐸𝑚) 

 

(13) 

𝐸2 =
𝐸𝑚

1 − √(1 − 𝑉𝑣)𝑉𝑓[1 − (𝐸𝑚/𝐸2
𝑓
)]

 

 

(14) 

𝐺12 =
𝐺𝑚

1 − √(1 − 𝑉𝑣)𝑉𝑓[1 − (𝐺𝑚/𝐺12
𝑓
)]

 

 

(15) 

𝐺23 =
𝐺𝑚

1 − √(1 − 𝑉𝑣)𝑉𝑓[1 − (𝐺𝑚/𝐺23
𝑓

)]
 

 

(16) 

𝑣12 = 𝑣𝑚 + (1 − 𝑉𝑣)𝑉𝑓(𝑣12
𝑓

− 𝑣𝑚) (17) 

 

2.5.2 Analytical Models Based on the Theory of Elasticity 

Numerous methodologies have been suggested to determine the homogenized 

characteristics of composite materials. These methods encompass both upper and lower 

bounds derived from variational approaches [21]. In this subsection, a couple of 

analytical models grounded in elasticity theory are presented, providing concise 

descriptions, outlining the underlying assumptions for each, and presenting their 

governing equations. 
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2.5.2.1 Mori-Tanaka: 

The concept involves deriving a collective behaviour by considering the behaviours of 

both the fibres and the matrix. Consequently, stress and strain tensors can be determined 

based on their average values, which are evaluated for both the matrix and the fibres. 

The fundamental assumption in macroscopic homogenization is to establish a connection 

between the average stress and average strain tensors. Assuming that the constituents 

are linear and elastic, it is feasible to formulate average equations for the fibres and the 

matrix. This allows us to calculate the longitudinal and transverse elastic modulus, in-

plane Poisson's ratio, in-plane, and out-of-plane shear modulus using the following 

equations. 

𝐸1 = 𝑉𝑓𝐸1
𝑓
+ (1 − 𝑉𝑓)𝐸

𝑚 + 2𝑉𝑓(1 − 𝑉𝑓)𝑍1(𝑣12
𝑓

− 𝑣𝑚)
2

 

 

(18) 

𝐸2 =
𝐸1

[1 − (𝑣𝑚)2](𝑌1 + 𝑌2)
 

 

(19) 

𝑣12 = 𝑣𝑚 + 2𝑉𝑓

𝑍1

𝐸𝑚
(𝑣12

𝑓
− 𝑣𝑚)[1 − (𝑣𝑚)2] 

 

(20) 

𝐺12 =
𝐸𝑚

2(1 − 𝑉𝑓)(1 + 𝑣𝑚)
[1 + 𝑉𝑓 −

4𝑉𝑓

1 + 𝑉𝑓 + 2(1 − 𝑉𝑓)
𝐺12

𝑓

𝐸𝑚 (1 + 𝑣𝑚)

] 

 

(21) 

𝐺23 = 𝐸𝑚[2(1 + 𝑣𝑚) +
𝑉𝑓

1 − 𝑉𝑓

8[1 − (𝑣𝑚)2]
+

𝑉𝑓

𝐸𝑚 − 2𝐺23
𝑓 (1 + 𝑣𝑚)

]−1 
(22) 

2.5.3 Halpin-Tsai: 

The proposed set of equations differs from those in the reference [21]. Additionally, we 

introduce the parameter 𝜁𝐸2
 and 𝜁𝐺12

 [21] that are parameters that can be adjusted 

through experimental data calibration. We offer a general recommendation for cases 

where experimental calibration data is not available in the following sections. The 

different equations proposed are: 
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𝐸2 = 𝐸𝑚(
1 + 𝜁𝐸2

𝜂𝐸2
𝑉𝑓

1 − 𝜂𝐸2
𝑉𝑓

) 

 

(22) 

𝐺12 = 𝐺𝑚(
1 + 𝜁𝐺12

𝜂𝐺12
𝑉𝑓

1 − 𝜂𝐺12
𝑉𝑓

) 

 

(23) 

Moreover, from this analytical model, Vignoli carried out experiments in order to 

determine the appropriate usage of each model. In Figures 12 to 16 it is possible to locate 

both the average error and the error range generated against the experiments data. 

  

Figure 12: (a) Average and (b) range 

error in axial elastic modulus [21]. 

Figure 13: (a) Average and (b) range 

error in transverse elastic modulus [21]. 
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Figure 14: (a) Average and (b) range 

error in axial elastic modulus. [21] 

Figure 15: (a) Average and (b) range 

error in transverse elastic modulus. [21] 

 

Figure 16: (a) Average and (b) range error in axial Poisson’s ratio. [21] 
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Based on the data provided, Vignoli concluded that it's challenging to determine 

quantitatively which model offers the best predictions [21]. However, qualitative analysis 

of the provided graphs can offer insights. Notably, all models proved accurate in 

determining 𝐸1, with ROM equations recommended for their simplicity. 

For 𝑣12 , the Chamis model demonstrated superior accuracy, particularly when 

considering void volume 𝑉𝑣. Halpin-Tsai model provided the most precise representation 

of 𝐸2. 

ROM exhibited similar errors for axial properties, with notable discrepancies in 

representing 𝐸2 and 𝐺12, prompting the introduction of an experimental parameter, ξ, in 

ROMm to address this issue. The parallel assumption made in ROM contributes to its 

simplicity but leads to challenges in results accuracy, especially when analysing the 

transverse plane. 

Among the considered models, the Chamis model yielded the lowest average errors for 

both 𝐺12 and 𝐺23. Both the Chamis model and ROM/ROMm will be utilized for analytical 

modeling to compare and validate computational modeling of the RUC. This approach 

aims to identify ROM discrepancies compared to other models, despite its widespread 

popularity and simplicity. 

2.6 FINITE ELEMENT ANALYSIS 

To accurately capture the homogenized material properties and the distribution of 

stresses within a Repeating Unit Cell (RUC), implementing a periodic boundary condition 

is essential, as outlined in reference [23]. This approach allows for the simulation of an 

infinite lattice by replicating the RUC in a periodic arrangement. In the context of 

Abaqus/Standard, a Python script can be utilized to establish these boundary conditions 

effectively. By applying independent loading conditions to the RUC, the simulation can 

mimic real-world scenarios more accurately, enabling the assessment of both in-plane 

and out-of-plane tensile and shear stresses. This methodology not only aids in 

understanding the material behaviour under various loading conditions but also 

facilitates the extraction of meaningful data for further analysis and optimization in finite 

element analysis (FEA) studies. 
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2.7 MESH 

In Abaqus/Standard, meshing plays a critical role in finite element analysis (FEA) as it 

directly impacts the accuracy and computational cost of simulations. Abaqus offers 

various meshing techniques, including standard, swept, and mapped meshing, each 

suitable for different types of geometries and analyses. The mesh quality is essential for 

obtaining reliable results; therefore, Abaqus/Standard provides tools for mesh 

diagnostics and optimization to ensure high-quality meshes. Additionally, Abaqus allows 

for the refinement of the mesh in regions of interest, where higher resolution is needed 

to capture complex phenomena accurately. Furthermore, Abaqus supports automatic 

mesh generation and adaptive meshing, which streamline the modelling process and 

enhance computational efficiency by dynamically adjusting the mesh during the analysis 

based on predefined criteria. Overall, the meshing capabilities in Abaqus empower users 

to generate robust and accurate finite element models for a wide range of engineering 

applications. 

2.7.1 Mesh Element & Aspect Ratios 

When meshing models for both 2D and 3D problems, the aspect ratio of elements serves 

as a metric for evaluating mesh quality, representing the ratio between the longest and 

shortest edge of an element (19), where 𝑥 is the edge distance.  

𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
max (𝑥1, 𝑥2, … , 𝑥12)

min (𝑥1, 𝑥2, … , 𝑥12)
 

(24) 

Ideally, a ratio of 1 indicates a compact element, while higher ratios signify ‘elongated’ 

elements, which are undesirable due to potential issues during data collection. The 

primary disparity between a ratio of 1 and higher, undesired ratios like 3, lies in the 

discrepancy in distances between nodes along longer and shorter edges, leading to 

numerical challenges such as instability, ill-conditioning, reduced solution accuracy, 

compromised mesh convergence, and degraded mesh quality. 

The illustration in Figure 18 also demonstrates various types of mesh elements, revealing 

similarities among the three depicted elements. Additionally, it's evident that in Figure 

18 the elements (b) and (d) are both three-dimensional, whereas (a) and (c) are two-

dimensional. The use of IDs in the Figure 17 title adds an intriguing element, particularly 

for those unfamiliar with mesh elements.  
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Additionally, in Abaqus, the 3D element types are referred to as C3D4 for 4-noded 

tetrahedrons, C3D6 for 6-noded wedges, and C3D8 for 8-noded bricks with full 

integration. These elements are commonly employed to mesh intricate geometries by 

combining them. Similarly, for 2D, the sequence is CPE3 and CPE4, where PE indicates 

plane strain [27]. CPE4 and C3D8 are typically utilized to model solid continuous bodies 

like an RUC due to their general-purpose linear brick element. In regions where geometry 

becomes more complex, the use of wedges tends to be more practical compared to C3D8. 

As mentioned earlier, these elements are full integration elements, but reduced 

integration elements are also introduced, often denoted with an 'R' after the mesh 

element code, such as 'C3D8R'. This feature assumes uniform strain across the elements 

by reducing the nodes within the element, from 4 to 1 for 2D and from 8 to 1 in 3D, for 

CPE4 and C3D8 respectively, thus reducing computational time. 

When modelling RUC, a decision must be made when selecting an appropriate mesh 

element. Comparing C3D4 to C3D8, the former produces stiffer behaviour due to having 

fewer nodes. As mentioned in Section 4, the thickness of the 3D RUC equals the mesh size, 

hence a mesh element unit of thickness is used. Consequently, more C3D4 elements 

would be needed to mesh the 3D RUC entirely [28]. On the other hand, elements with a 

higher number of nodes, such as C3D20, pose a problem as full integration elements of 

this type are not suitable for materials with high Poisson’s ratios like 'Flax' due to their 

plastic behaviour, which requires longer computational time [28]. 

C3D8R effectively captures stress concentrations throughout the geometry's boundaries 

as the node is situated in the middle of the mesh element. Thus, due to the RUC geometry 

in both its axial and transverse planes, C3D8R has proven to be a reasonable option to 

model both 2D and 3D RUCs. Meanwhile, C3D6 will be utilized to complete the mesh in 

geometrically complex areas such as curvatures. Below a breakdown of the mesh element 

naming is provided for further understanding. 

 

Figure 17:  Mesh Element ID breakdown. 

In this breakdown, (1) represents a continuum (solid) element, while (2) indicates its 

dimensionality (1D, Plane Strain (PE) or 3D), and (3) signifies the number of nodes.  
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Figure 18: Comparison of 2D and 3D Mesh Elements: (a) C2D3, (b) C3D6, (c) CPS4 and (d) 
C4D8 with Aspect Ratio, 𝐴𝑅 ≈ 1, (left) against high aspect ratio, 𝐴𝑅 ≫ 1, (right). 

3 PROJECT OUTLINE  

3.1.1 Project Rationale 

In Section 2.2, it was noted that fiber-hybrid composites offer several advantages over 

single constituent materials, including enhanced strength-to-weight ratios, potential cost 

reduction, and reduced overall weight. Notably, the use of natural fibres discussed in 

Section 2.1 holds a significant environmental advantage over synthetic fibres, as the 

components of these composites are biodegradable. Therefore, this study aims to not only  

provide computational data on the fibres under consideration but also to facilitate a 

comparative analysis to elucidate the merits and drawbacks of natural and synthetic 

fibres. The selection of fibres for the study is somewhat arbitrary, with the sole criterion 

being their widespread usage across various industries. 

The work of this dissertation encompasses both analytical and computational modelling 

of the behaviour of single fiber-reinforced polymer composites. This aims to confirm the 



45 
 

performance of each single fiber and establish a strong correspondence between the 

computational model discussed in Section 2.4 and the analytical model, with the use of 

Python Script located in ‘Appendix B: PYTHON SCRIPT FOR VALIDATION USING 

ANALYTICAL MODELS FOR SINGLE-FIBER COMPOSITES’, using equations from Section 

2.5. This involves creating a table displaying the homogenized properties, including 

transverse elastic and shear modulus, as well as transverse Poisson's ratios, akin to the 

approach in Section 2.5. 

Subsequent to validating the behaviour of fibre-hybrid materials, the next phase of the 

research involves modelling fibre-hybrid composites with the use of Abaqus/Standard 

and Digimat for both analytical and computation results. This encompasses various 

combinations of the four selected fibres with a chosen matrix material, as detailed in 

Section 4.1. Moreover, the combination of Natural-Synthetic fiber-hybrid composites, 

thus, Basalt/Carbon/Epoxy, Basalt/E-glass/Epoxy, Flax/Carbon/Epoxy and Flax/E-

glass/Epoxy. These composite models will be tested at volume fraction of 0.6. This 

volume fraction is considered suitable based on the explanation provided in Section 2.4. 

The research begins with 2D modelling utilizing the chosen RUC shape. It is essential to 

note the exclusion of axial parameters in this phase due to inherent constraints within 2D 

modelling stemming from the absence of thickness in the axial direction. This decision is 

made to establish a robust correspondence between analytical and computational 

models, while also facilitating the exploration of mesh strategies. 

Following the aforementioned procedure, 3D modelling is employed to accurately 

capture transverse and axial parameters, along with the introduction of thickness, 

contingent upon time constraints not impeding progress, as outlined in Sub-section 2.4.1. 

It is noteworthy that the homogenized properties, crucial for deriving final results, are 

derived from the 3D modelling process, offering a more precise representation of the 

composite within these dimensions. 

RUCs are favoured over RVEs in this investigation, primarily because of limitations within 

the Abaqus/Student Edition, which restricts the number of cells in a file, as delineated in 

Section 2.4. As the transition to 3D modelling commences, RUC modelling will persist as 

the preferred approach, especially when employing computer clusters with the full 

version of Abaqus/Standard Edition as the approach is known by the user. In RUCs 
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modelling a periodic boundary condition is applied, as shown in Section 4.1.1, using a 

Python Script, PBC plug-ins from GitHub. 

It's also worth noting that the variety of transversely isotropic and isotropic constituents 

will be employed during data extraction. In this context, the use of RUCs is adequate to 

represent the composite material.  

3.1.2 Aims and Objectives 

The aim of the study is to predict the homogenised lamina properties and micro stress 

fields of natural synthetic fiber-hybrid composites. 

Objectives: 

1. Examine mechanical properties of different combinations of natural and synthetic 

fiber-hybrid composites. 

2. Estimate mechanical properties of the natural synthetic fiber-hybrid composites 

using computational models in Abaqus/Standard. 

3. Estimate mechanical properties of the natural synthetic fiber-hybrid composites 

using analytical methods in Python. 

4. Validate the behaviour of composites comparing analytical models against 

computational models. 

5. Provide 2D modelling data of the composites initially, with a potential expansion 

to 3D modelling to capture missing data.  

6. Estimate the micro-stress fields of the natural synthetic composites using 

computational models in Abaqus/Standard. 

7. Estimate the micro-stress fields of the natural synthetic composites using 

analytical models in Python. 
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4 METHODOLOGY 

Using a Python script, the RUC's geometry will be generated and incorporated into 

ABAQUS/Standard's workspace. The script prompts various inputs such as fibre volume 

fraction and material properties detailed in subsection 4.3. The code can generate 

different volume fractions for both single fibres and fiber hybrid composites. In this 

project, a single polymer, Epoxy, is used. Volume fractions will be of 0.60. The selected 

volume fraction is based on its prevalence in modelling the micromechanics of 

composites as lower volume fraction may compete with conventional materials, and in 

the other hand, high volume fraction composites present inherent complications 

throughout the manufacturing processes. This volume fraction accurately reflects the 

proportions commonly observed in composites utilized across various sectors, as 

detailed in the corresponding Section 3.  

To validate the model, Section 5.2 will implement and demonstrate an analytical 

comparison for single and fibre hybrid composites with the use of Python Script found in 

‘Appendix B: PYTHON SCRIPT FOR VALIDATION USING ANALYTICAL MODELS FOR 

SINGLE-FIBER COMPOSITES’ and Digimat Software respectively. The model's variation 

from the coarsest mesh baseline computation model will be presented as a percentage of 

discrepancy.  

Across the report, numerous assumptions have been made to simplify the RUC model, 

thus, a conglomerate of all the assumptions made is presented below in Table 2. 

Table 2: RUC Model assumptions conglomerate. 

 Fiber Matrix Interphase 

Assumptions • Continuous 

• Homogeneous 

• Transversely Isotropic 

• Defect-free. 

• Cylindrical fibres 

(Circular Cross-sections) 

• Linear Elastic 

• Homogeneous 

• Isotropic 

• Void-free 

• Linear Elastic 

• Perfect fiber-

matrix 

interphase 
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To enable 3D modelling, a thin thickness is applied to the RUC (Representative Unit Cell), 

often set equal to the size of the mesh elements. This ensures uniformity throughout the 

mesh volume and helps maintain an ideal aspect ratio of 1 for the elements. This approach 

enhances the accuracy of the model by ensuring consistency and independence from the 

mesh resolution, thereby yielding reliable results. 

For the 2D RUC, the matrix is meshed using 4-node elements (CPE4R) and 3-node 

elements (CPE3), along with a Hex-Dominated mesh. The fibres are divided and meshed 

using 4-node elements (CPE4R). Conversely, for the 3D RUC, the matrix employs 8-node 

elements (C3D8R) and 6-node elements (C3D6) within a Hex-Dominated mesh, while the 

fibres are divided and meshed using 8-node elements (C3D8R). To ensure result 

accuracy, a mesh convergence study is conducted, varying the mesh size as a percentage 

from the finest mesh with the most elements, and comparing the results to the total CPU 

time required for simulation runs across different mesh sizes. With a fiber radius of 5 µm, 

the current mesh sizes are set as fractions of this radius (25%, 15%, 10%, 5%, and 1% 

for both 2D and 3D). Notably, the thickness of the 3D RUC is adjusted to match the 

specified percentage, ensuring that the mesh becomes finer while maintaining an aspect 

ratio of 1 for the elements. 

As previously stated, to ensure an accurate representation of the homogenized material 

properties of the composite material, a periodic boundary condition will be integrated 

into the Python script. This will be elaborated on and illustrated in Section 4.5, covering 

both the constraints and applied loads. 

4.1 RUC MODELLING 

A Python Script is made with the use of Macros, designed to generate 2D and 3D Repeating 

Unit Cell (RUC) models in Abaqus for both single-fiber and fiber-hybrid composites (with 

a maximum of 2 fibres) in both 2D and 3D configurations. The script assumes a Fiber 

Volume Fraction (𝑉𝑓) of 0.60, where in hybrid fiber composites, the volume fraction of 

each fiber type is equal (i.e., 𝑉𝑓1= 𝑉𝑓2 ). A fixed fiber radius of 5 µm is applied uniformly 

across all materials and combinations. 

The RUC's dimensions and meshing strategy are detailed thoroughly. This includes 

specifying the size of the part, the fibre’s configuration and explaining the meshing 



49 
 

strategy employed to achieve mesh independence, ensuring accurate and reliable 

simulation results. 

4.1.1 RUC Size 

The RUC size, as outlined in Section 4.1, will remain constant for each composite, 

determined by the function: L (width of RUC), H (height of RUC), and R (radius of the 

fiber). Thus, an RUC of area 𝐻 × 𝐿 . With the addition of thickness, 𝑡 , as 3D RUC is 

introduced which is equal to the mesh size, to maintain a low aspect ratio element, thus 

a 3D RUC one mesh element thick. 

𝐿 = 𝑅√
2𝜋

𝑉𝑓√3
 

 

(25) 

𝐻 = 𝐿√3 

 

(26) 

𝑡 = 𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒 (27) 

 

Thus, the area of the RUC is dependent on the radius of the central fiber and volume 

fraction given for the fibres. It is worth mentioning that for both Fibre1 and Fibre2 in a 

fiber hybrid composite the radius is equal. This said, if E-Glass and Basalt are used for the 

modelling, Fibre1, being E-Glass, will be found in the corners partitioned as a quarter of 

fiber in each corner which combined will provide an entire fiber area, as for Fibre2, in 

this case the Basalt can be found in the centre of the RUC as a complete fiber. The 

completeness of quarter fibres found in edges will later be demonstrated in Subsection 

4.5 Periodic Boundary Condition Implementation as the RUC is duplicated across the 

workspace as mentioned in Section 2.3 Periodic Boundary Condition. 

4.1.2 Microstructure Geometry 

Subsection 5.2.1 involves evaluating the impact of the RUC's microstructure by 

comparing it with analytical models. This comparison encompasses both 2D and 3D 

models and is conducted while maintaining constant volume fractions, as outlined in 

Section 4. The microstructure is structured using hexagonal packing, illustrated in Figure 

19. Importantly, when incorporating fiber hybrid composites, a specific default order is 
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defined. For instance, in the case of Basalt/Carbon/Epoxy, the sequence within the RUC's 

structure is Fibre1/Fibre2/Epoxy, as depicted in Figure 19. 

 

 

Figure 19: (a) 2D and (b) 3D RUC microstructure geometry of composite Fiber1/ 

Fiber2/Matrix. 

4.2 MESH STRATEGY AND ELEMENT 

Optimizing the mesh strategy is crucial for generating results that accurately represent 

the real composite material. As highlighted in section 3.1 and elaborated on in section 4.2, 

a mesh convergence analysis is conducted to ensure reliable outcomes, focusing on 

homogenized property 𝐸2,  as this engineering constant tends to be volatile during 

simulations in Abaqus/Standard between 2D and 3D due to the boundary conditions 

applied. This section delves into various aspects considered to attain mesh-independent 

results, including the selection of mesh elements, managing aspect ratios, partitioning 

within the RUC, employing Specimen IDs for mesh convergence analysis completion, and 

addressing potential mesh failures as initial mesh sizes are applied. 

4.2.1 Mesh Elements 

In sub-section 2.7.1, it was noted that the mesh utilized for both 2D and 3D RUC models 

employs a predominantly hexagonal structure, incorporating both hexahedral elements 

with four nodes and wedge elements with three nodes. This approach is maintained 

across both dimensions, with the main distinction being the addition of thickness for 

generating 3D parts, as elaborated in subsection 2.7.2. The Hex-Dominated mesh can 

utilize either reduced-integration elements to decrease simulation time or full-
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integration elements, which offer higher accuracy but come with longer simulation 

durations. 

4.2.2 Initial Global Mesh Size 

After setting the RUC as illustrated in section 4.1, an initial global mesh will be applied to 

the unit cell with the use of the Python script. The mesh size range is made considering 

time processing, results accuracy, and mesh quality, focusing on maintaining element 

aspect ratios and physical interphases within the different materials.  

During the generation of meshes within the specified range, potential errors/failed mesh 

may arise, necessitating iterative adjustments until a viable mesh is attained for each 

configuration. This enables subsequent testing for mesh sensitivity analysis. Up to five 

iterations will be undertaken to ensure comprehensive mesh refinement or ascertain the 

infeasibility of generating a suitable mesh for Finite Element Analysis (FEA) processing 

of the 3D Representative Unit Cell (RUC). Following each attempt, the mesh size will be 

decreased by 5%, thus multiplying prior mesh size by 0.95, providing the values as 

detailed in Table 3. This ensures that each global mesh is tested despite complications. 

Table 3: Mesh Size feasibility convergence. 

Initial Mesh 

Size 

Iteration0 Iteration1 Iteration2 Iteration3 Iteration4 

0.05 0.05 0.0475 0.045125 0.042869 0.040725 

0.25 0.25 0.2375 0.225625 0.214344 0.203627 

0.5 0.50 0.475 0.45125 0.428688 0.407253 

0.75 0.75 0.7125 0.676875 0.643031 0.61088 

1.0 1.00 0.95 0.9025 0.857375 0.814506 

 

4.2.3 Partitioning 

Partitioning has been implemented within the Representative Unit Cell (RUC) to enhance 

mesh quality, ensure symmetry within the unit cell, and address conflicts by constraining 

the mesh in problematic areas. This measure aims to prevent discrepancies in results, as 

depicted in Figure 21. Notably, the partitioning ensures alignment across the four faces 

divided by axes 2 and 3 in the transverse plane, with the partition datum positioned at 

the midpoint of fiber 2 (the centre of the RUC). However, Figure 20 reveals discrepancies 
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in element sizes between the left and right faces which consequently generates 

asymmetric stresses across opposite faces and edges despite the applied periodic 

boundary condition, and subsequently generating asymmetric and inaccurate results. 

 

Figure 20: Asymmetric RUC for fiber-hybrid composite at mesh size: (a) Part partition, 

(b) Mesh and (c) von Mises stress post-processing 

Figure 21 demonstrates how the introduction of a partition within the matrix has 

addressed the asymmetry observed across the mesh in Figure 20. By dividing the matrix 

into four equal parts rotated at 45°, symmetry is achieved across the mesh within the 

matrix, resulting in symmetric outcomes from Abaqus/Standard post-processing, as 

depicted in Figure X (c). This partitioning technique has significantly enhanced the 

accuracy of the results. The purpose of the Figures 21 (c) and 20 (c) is not to illustrate 

stress distribution across the RUC but rather to highlight the symmetry achieved through 

diagonal partitioning within the composite matrix for improved accuracy and mesh 

independent results.  

 

Figure 21: Symmetric RUC for fiber-hybrid composite at mesh size: (a) Part partition, 
(b) Mesh and (c) von Mises stress post-processing. 
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4.2.4 Mesh Strategy: Specimen ID 

To conduct a mesh sensitivity analysis and systematically capture the influence of various 

factors on result accuracy, a Specimen ID system is introduced. This system encompasses 

factors such as material type (e.g., Basalt and Carbon), the type of fiber and matrix mesh 

elements, five different global mesh sizes, and volume fraction used. This configuration 

necessitates a total of 20 simulations to populate Table 4 comprehensively, representing 

the mesh sensitivity of the RUC. Subsection 5.1 later presents the results derived from 

these simulations. 

1. Reinforced Fibre Material: (B: Basalt; BC: Basalt/Carbon) 

2. Matrix Material: (E: Epoxy) 

3. Fiber Mesh Element: (H: Hex-Dominate Element with Reduction CPE3/CPE4R; 

3D: C3D6/C3D8R)) 

4. Matrix Mesh Element: (H: Hex-Dominate Element with Full Integration (2D: 

CPE3/CPE4R; 3D: C3D6/C3D8) 

5. Global Mesh Size: (1.0, 0.75, 0.50) 

6. Fibre Volume Fraction: (0.6: 𝑉𝑓 = 0.60) 

7. RUC dimension: (2: 2D; 3: 3D) 

Table 4: Specimen ID strategy for Mesh Sensitivity Analysis. 

Specimen ID 𝑉𝑓 Global Mesh 

Size 

Fiber Mesh 

Element 

Matrix Mesh 

Element 

BEHH_0.05_0.6_2 0.60 0.05 (0.01R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BEHH_0.25_0.6_2 0.60 0.25 (0.05R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BEHH_0.50_0.6_2 0.60 0.5 (0.10R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BEHH_0.75_0.6_2 0.60 0.75 (0.15R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

Figure 22: Mesh Specimen ID breakdown. 
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BEHH_1.00_0.6_2 0.60 1.0 (0.20R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BCEHH_0.05_0.6_2 0.60 0.05 (0.01R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BCEHH_0.25_0.6_2 0.60 0.25 (0.05R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BCEHH_0.50_0.6_2 0.60 0.50 (0.10R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BCEHH_0.75_0.6_2 0.60 0.75 (0.15R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BCEHH_1.00_0.6_2 0.60 1.0 (0.20R) 
Hex-Dom 

CPE3/CPE4R 

Hex-Dom 

CPE3/CPE4R 

BCEHH_0.05_0.6_3 0.60 0.05 (0.01R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_0.25_0.6_3 0.60 0.25 (0.05R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_0.50_0.6_3 0.60 0.5 (0.10R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_0.75_0.6_3 0.60 0.75 (0.15R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_1.00_0.6_3 0.60 1.0 (0.20R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_0.05_0.6_3 0.60 0.05 (0.01R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_0.25_0.6_3 0.60 0.25 (0.05R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_0.50_0.6_3 0.60 0.50 (0.10R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_0.75_0.6_3 0.60 0.75 (0.15R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 

BCEHH_1.00_0.6_3 0.60 1.0 (0.20R) 
Hex-Dom 

C3D6/C3D8R 

Hex-Dom 

C3D6/C3D8R 
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4.3 MATERIALS PROPERTIES 

The natural synthetic fibres and matrix phase listed below in table 2, are the constituents 

subjected to modelling. To understand the behaviour of the constituents modelling of 

single fiber composites and combinations between the different natural and synthetic 

fibres will be performed and compared. 

Table 5: Combination of fibre-hybrid composites used for simulations. 

Combination Fiber 1 Fiber 2 Matrix 

1 
Basalt 

Carbon 

Epoxy 
2 E-Glass 

3 
Flax 

Carbon 

4 E-Glass 

 

The property’s values allocated for each constituent and that will be used throughout the 

modelling are listed below, where 𝐸1 is the axial elastic modulus and 𝐸2 to the transverse 

elastic modulus, 𝑣12  and 𝑣13  correspond to the axial and transverse Poisson’s ratios 

respectively, which are equal. Finally, 𝐺12 and 𝐺23, represent the axial, transverse shear 

modulus of the phases separately. It is worth noting that some materials are transversely 

isotropic and therefore 𝐸2 = 𝐸3  for all constituents and 𝐺12 = 𝐺23  specifically for E-

Glass, Basalt and Epoxy.  

Table 6: Elastic constants of reinforcement and matrix constituents [3].  

Property Carbon 

(IM7) 

E-Glass Basalt Flax Epoxy 

𝐸1 (𝐺𝑃𝑎) 290 73 89 54.1 4.30 

𝐸2 = 𝐸3 (𝐺𝑃𝑎) 21 73 89 7 4.30 

𝐺12 = 𝐺13 (𝐺𝑃𝑎) 14 30.20 21.70 3 1.29 

𝐺23 (𝐺𝑃𝑎) 7.04 30.20 21.70 2 1.29 

𝑣12 = 𝑣13 0.20 0.23 0.26 0.3 0.35 

𝑣23 0.49 0.23 0.26 0.75 0.35 
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4.4 PERIODIC BOUNDARY CONDITIONS  

PBC entails replicating a 3D modelled 'box,' often called a unit cell, infinitely across space 

to represent the composite material, ensuring the periodicity of mechanical fields and 

maintain continuity between neighbouring regions of the RUC. Implementing PBC in 

finite element analysis poses two main challenges that need to be overcome for successful 

simulation. The first challenge involves ensuring an equal number of nodes on opposite 

edges to maintain continuity and prevent artifacts as illustrated in Figure 20. The second 

challenge is to align corresponding nodes accurately to replicate the unit cell throughout 

space.  

The type of boundary conditions imposed on Repeating Unit Cells (RUCs) significantly 

affects the estimated properties. Linear displacement and uniform traction boundary 

conditions establish upper and lower bounds for homogenized properties. However, the 

strain energies from these conditions may not fulfil the inequality 𝑈𝑡 ≤ 𝑈𝑝 ≤ 𝑈𝑢, where 

𝑈𝑡, 𝑈𝑝, 𝑈𝑢 represent strain energies obtained from uniform traction, periodic 

displacement, and linear displacement boundary conditions, respectively [29]. To 

address this, periodic displacement conditions, outlined by Equation (3), are often 

preferred for RUC models [29]. Despite challenges in ensuring periodic traction 

conditions with linear displacement or uniform traction conditions, Equation (3) ensures 

periodic traction conditions while enforcing periodic displacement conditions as shown 

in Figure 23. 

𝑢𝑖(𝑥 +  ∆𝑥) − 𝑢𝑖(𝑥) = 𝜀𝑖𝑗∆𝑥𝑗  (3) 

 

Where 𝑢𝑖  is displacement in 𝑥𝑖  direction, 𝑥 +  ∆𝑥 and 𝑥 are position vectors of opposite 

RUC’s faces, and 𝜀𝑖𝑗 is the macro-strain component. 
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Figure 23: Periodic Boundary Condition applied on (a) 2D and (b) 3D RUC 

Periodic Boundary Conditions are applied within the Python Script by the following equations 

(28) and (29), accounting for each edge, 𝛤𝑖, and corner node, 𝑁𝑖, of the RUC respectively: 

{
𝑈2,𝛤2−4

− 𝑈2,𝛤0−3
= 𝑈2,𝑁2

𝑈3,𝛤2−4
− 𝑈3,𝛤0−3

= 𝑈3,𝑁2

{
𝑈2,𝛤3−4

− 𝑈2,𝛤0−2
= 𝑈2𝑁4

𝑈3,𝛤3−4
− 𝑈3,𝛤0−2

= 𝑈3𝑁4

 (28) 

 

{
𝑈2,𝑁4

− 𝑈2,𝑁0
= 𝑈2,𝑁2

+ 𝑈2,𝑁4

𝑈3,𝑁4
− 𝑈3,𝑁0

= 𝑈3,𝑁2
+ 𝑈3,𝑁4

 

 

(29) 

 

The periodicity is applied as shown in Equations (28) and (29), using governing Equation 

(3) as base, for corner nodes and the RUC’s edges as mentioned above. In this equation, 

variables 𝑈2  and 𝑈3  stand for the displacement across the transversal plane, 2 and 3, 

respectively. RUC’s edges are denoted as followed 𝛤0−2, 𝛤2−4, 𝛤3−4 and 𝛤0−3, as shown in 

Figure 24. Similarly, the RUC’s nodes are denoted as 𝑁0, 𝑁2, 𝑁2 and 𝑁0. This convention is 

used in order to keep the node 𝑁1 assigned to the axial plane when 3D is considered as 

shown in Figure 23. 
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Figure 24: Periodic Boundary Conditions Applied to the RUC. 

4.5 BOUNDARY CONDITIONS  
Once the periodic boundary condition is implemented on the RUC, the macro mechanical 

behaviour of the composite is analysed using the finite element analysis software 

Abaqus/Standard. To derive the macro-stress from the microstructure, a macro-strain, 

denoted as 𝑈 in the figures of Section 4.1, must be applied. Consequently, a relationship 

between stress and strain is essential, represented by an equation (30). Here, σ, denotes 

the stress tensor, and ε signifies the strain tensor.  

𝝈 = [𝐶]𝜺 

 
(30) 

[𝐶] =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

 

 

(31) 

This is the case for unidirectional laminate, as it is assumed to be orthotopic and linearly 

elastic. Obtaining strain and stress 𝐶𝑖𝑗 can be derived [30]. Where the relation between 

𝐶𝑖𝑗 and the homogenized constants are as depicted in equations (32). 

𝐸1 = 1/𝐶11 𝑣12 = 𝐶12/𝐶11 𝐺12 = 1/2𝐶44 

(32) 𝐸2 = 1/𝐶22 𝑣13 = 𝐶13/𝐶11 𝐺13 = 1/2𝐶55 

𝐸3 = 1/𝐶33 𝑣23 = 𝐶23/𝐶22 𝐺23 = 1/2𝐶66 

 

It's important to acknowledge that for a general orthotropic material, determining nine 

independent material constants is necessary. However, equation (32) only incorporates 
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six, indicating the need for two additional sets of solutions. Notably, the bottom three 

equations in (32) yield the same modulus for both sets of solutions. [30] 

Regarding the study in this paper, the information above holds true for 3D RUCs whereas 

for the 2D RUCs, the homogenized properties obtained from Abaqus/Standard and those 

located in the transverse plane thus: 𝐸2, 𝐸3, 𝑣23 and 𝐺23. Required only from the stiffness 

matrix the following constants: 𝐶22, 𝐶33, 𝐶23  and 𝐶66 . Thus, four independent material 

constants that are evaluated from the 2D model. 

Moreover, conducting a micromechanical study for larger-scale composites is 

impractical. Therefore, homogenization, also referred to as 'macro-micro' analysis, is 

carried out. This approach involves initially studying the micromechanics of local areas 

to predict the composite's behaviour at representative nodes, which is then scaled up to 

a common scale, such as the macro level, as demonstrated in Section 4.2. 

In sub-section 4.1.1 and 4.1.2 the boundary conditions for 2D and 3D modelling are 

displayed. Figure 25: Schematic Illustration of the Boundary Condition applied to obtain 

the 2D RUC Homogenized property: Elastic Modulus (a)(1) E2, (a)(2) E3. and Figure 27: 

Schematic Illustration of the Boundary Condition applied to obtain the 3D RUC 

Homogenized property: Elastic Modulus (a)(1) 𝐄𝟏, (a)(2) 𝐄𝟐, (a)(3) 𝐄𝟑. are under pure 

tension while Figure 26: Schematic Illustration of the Boundary Condition applied to 

obtain the 2D RUC Homogenized property: Shear Modulus (b)(1) G12, (b)(2) G13, (b)(3) 

G23 and Figure 28: Schematic Illustration of the Boundary Condition applied to obtain the 

3D RUC Homogenized property: Shear Modulus (b)(1) G12, (b)(2) G13, (b)(3) G23 are pure 

simple shear in order to obtain both axial and transversal modulus individually and 

suggested by the title of the figures. Table 7: Boundary Condition applied to obtain 

Homogenized property: Elastic Modulus from the RUC, Table 8: Boundary Condition 

applied to obtain Homogenized property: Shear Modulus from the RUC, Table 9: 

Boundary Condition applied to obtain Homogenized property: Elastic Modulus from the 

RUC and Table 10: Boundary Condition applied to obtain Homogenized property: Shear 

Modulus from the RUC illustrates which homogenized properties are obtain for each 

loading setting, followed by the boundary conditions imposed in each node of the RUC. 

This said, a master Node ( 𝑁0 ), denoted as restrained Node is imposed from 

Abaqus/Standard. This is done to prevent any undesired movement from the part, and 

thus, generate feasible results. Regarding the remaining nodes: 𝑁1 , 𝑁2  and 𝑁3 , a 
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maximum of 3 Degrees-of-freedom (DOF) for displacement are imposed in order to 

prevent rotation of the part from twisting and/or bending. 

4.5.1 2D Boundary Conditions 

 

 

. 

 

Figure 25: Schematic Illustration of the Boundary Condition applied to obtain the 2D RUC 
Homogenized property: Elastic Modulus (a)(1) 𝐸2, (a)(2) 𝐸3. 

Table 7: Boundary Condition applied to obtain Homogenized property: Elastic Modulus 
from the RUC. 

Fig. X Elastic Modulus (𝐸12, 𝐸13, 𝐸23) 

Figure ID Property Retained Node 

𝑁0 

Retained Node 

𝑁2 

Retained Node 

𝑁3 

Uniaxial deformation along 𝑥2-axis 

b(1) 
𝐸2 𝑈𝑁0 = 0 𝑈2

𝑁2 = 𝛿2 

𝑈3
𝑁2 = 0 

𝑈3
𝑁3 ≠ 0 

𝑈2
𝑁3 = 0 

Uniaxial deformation along 𝑥3-axis 

b(2) 
𝐸3 𝑈𝑁0 = 0 𝑈2

𝑁2 ≠ 0 

𝑈3
𝑁2 = 0 

𝑈3
𝑁3 = 𝛿3 

𝑈2
𝑁3 = 0 
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Figure 26: Schematic Illustration of the Boundary Condition applied to obtain the 2D RUC 
Homogenized property: Shear Modulus (b)(1) 𝐺12, (b)(2) 𝐺13, (b)(3) 𝐺23. 

Table 8: Boundary Condition applied to obtain Homogenized property: Shear Modulus 
from the RUC. 

Fig. X Shear Modulus (𝐺12, 𝐺13, 𝐺23) 

Figure ID Property Retained Node 

𝑁0 

Retained Node 

𝑁2 

Retained Node 

𝑁3 

Simple Shear deformation on 𝑥2𝑥3-plane 

b(1) 
𝐺23 𝑈𝑁0 = 0 𝑈2

𝑁2 = 0 

𝑈3
𝑁2 = 𝛿23 

𝑈3
𝑁3 = 0 

𝑈2
𝑁3 = 0 
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4.5.1 3D Boundary Conditions 

 

Figure 27: Schematic Illustration of the Boundary Condition applied to obtain the 3D RUC 

Homogenized property: Elastic Modulus (a)(1) 𝐸1, (a)(2) 𝐸2, (a)(3) 𝐸3. 

Table 9: Boundary Condition applied to obtain Homogenized property: Elastic Modulus 
from the RUC. 

Fig. X Elastic Modulus (𝐸12, 𝐸13, 𝐸23) 

Figure 

ID 

Property Retained 

Node 𝑁0 

Retained Node 

𝑁1 

Retained Node 

𝑁2 

Retained Node 

𝑁3 

Uniaxial deformation along 𝑥2-axis 

b(1) 
𝐸2 𝑈𝑁0 = 0 𝑈1

𝑁1 ≠ 0 

𝑈2
𝑁1 = 𝑈3

𝑁1 = 0 

𝑈2
𝑁2 = 𝛿2 

𝑈3
𝑁2 = 𝑈1

𝑁2 = 0 

𝑈3
𝑁3 ≠ 0 

𝑈2
𝑁3 = 𝑈1

𝑁3 = 0 

Uniaxial deformation along 𝑥3-axis 

b(2) 
𝐸3 𝑈𝑁0 = 0 𝑈1

𝑁1 ≠ 0 

𝑈2
𝑁1 = 𝑈3

𝑁1 = 0 

𝑈2
𝑁2 ≠ 0 

𝑈3
𝑁2 = 𝑈1

𝑁2 = 0 

𝑈3
𝑁3 = 𝛿3 

𝑈2
𝑁3 = 𝑈1

𝑁3 = 0 

Uniaxial deformation along 𝑥1-axis 

b(2) 
𝐸1 𝑈𝑁0 = 0 𝑈1

𝑁1 = 𝛿1 

𝑈2
𝑁1 = 𝑈3

𝑁1 = 0 

𝑈2
𝑁2 ≠ 0 

𝑈3
𝑁2 = 𝑈1

𝑁2 = 0 

𝑈3
𝑁3 ≠ 0 

𝑈2
𝑁3 = 𝑈1

𝑁3 = 0 
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Figure 28: Schematic Illustration of the Boundary Condition applied to obtain the 3D 

RUC Homogenized property: Shear Modulus (b)(1) 𝐺12, (b)(2) 𝐺13, (b)(3) 𝐺23. 

Table 10: Boundary Condition applied to obtain Homogenized property: Shear Modulus 
from the RUC. 

Fig. X Shear Modulus (𝐺12, 𝐺13, 𝐺23) 

Figure 

ID 

Property Retained 

Node 𝑁0 

Retained Node 

𝑁1 

Retained Node 

𝑁2 

Retained Node 

𝑁3 

Simple Shear deformation on 𝑥2𝑥3-plane 

b(1) 
𝐺23 𝑈𝑁0 = 0 𝑈2

𝑁1 = 𝑈3
𝑁1 = 0 

𝑈1
𝑁1 = 0 

𝑈2
𝑁2 = 𝑈3

𝑁2 = 0 

𝑈3
𝑁2 = 𝛿23 

𝑈2
𝑁3 = 𝑈3

𝑁3 = 0 

𝑈1
𝑁3 = 0 

Simple Shear deformation on 𝑥3𝑥1-plane 

b(2) 
𝐺13 𝑈𝑁0 = 0 𝑈2

𝑁1 = 𝑈3
𝑁1 = 0 

𝑈1
𝑁1 = 0 

𝑈2
𝑁2 = 𝑈3

𝑁2 = 0 

𝑈1
𝑁2 = 0 

𝑈2
𝑁3 = 𝑈3

𝑁3 = 0 

𝑈1
𝑁3 = −𝛿13 

Simple Shear deformation on 𝑥2𝑥1-plane 

b(3) 
𝐺12 𝑈𝑁0 = 0 𝑈2

𝑁1 = 𝑈3
𝑁1 = 0 

𝑈1
𝑁1 = 0 

𝑈2
𝑁2 = 𝑈3

𝑁2 = 0 

𝑈1
𝑁2 = −𝛿12 

𝑈2
𝑁3 = 𝑈3

𝑁3 = 0 

𝑈1
𝑁3 = 0 
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4.6 HOMOGENIZATIONS 

In the context described, RUCs can be conceptualized as an array of identical units, with 

periodic boundary conditions ensuring consistency. This setup ensures uniform 

deformation modes throughout the RUCs, preventing overlap or separation [30]. To 

determine the composite material's properties, a uniform macro-strain, 𝜀�̂�𝑗, is applied to 

each RUC. Since the collected properties are specific to individual nodes, calculating the 

unweighted volume average of micro-strains and micro-stresses is necessary to derive 

the macro-stresses and -strains of the entire composite, which encompasses all RUCs 

within the workspace. To upscale the homogenized properties from micro to macro level, 

Gauss's divergence theorem is utilized, alongside ensuring that the micro-stress field 

complies with the condition 𝜎𝑖𝑗,𝑗 = 0, indicating divergence-free outcomes. 

With this approach, the micro-stresses are determined through Equation (31), 

considering the reaction forces and displacements at the relevant nodes, where the 

periodic boundary condition is enforced. Equation (32) represents an integration around 

the edges of the RUC. Likewise, for the unweighted volume average of micro-strain, 

Equation (32) is employed, leveraging the applied displacements at control nodes to 

enforce a macro-strain condition, 𝜀�̂�𝑗,  thus deriving the macro-strain components, �̂�𝑖𝑗. 

�̂�𝑖𝑗 =
1

Ω
∫ 𝜎𝑖𝑗
Ω

𝑑Ω = ∫ 𝜎𝑖𝑘𝑛𝑘𝑥𝑗𝑑Υ
∂Ω=Υ

=
(𝐹𝑖)𝑗

Υ𝑗
 (no summation over the index j)    (31) 

𝜀�̂�𝑗 =
1

Ω
∫ 𝜀𝑖𝑗
Ω

𝑑Ω =
1

2Ω
∫ (𝑢𝑖𝑛𝑗 + 𝑢𝑗𝑛𝑖)𝑑Υ
∂Ω=Υ

 (32) 

Where �̂�𝑖𝑗  and 𝜀�̂�𝑗  are the macro-stress and micro-strain respectively. Ω stands for the 

volume of the RUC, 𝑛𝑖  is the vector unit normal to the boundary, (𝐹𝑖)𝑗  is the resultant 

force on the edge or surface (2D and 3D) normal to it in the 𝑥𝑗-direction. 

Using the macro-strain state, the 2D RUC undergoes four independent loading conditions, 

including normal and shear loading along transverse directions. Similarly, the 3D RUC 

model experiences six independent loading conditions, comprising normal and shear 

loading along axial and transverse directions. The homogenized properties obtained for 

both the 2D, and 3D models are detailed as follows: 

• 2D ‘Plane Strain‘ RUC: �̂�2, �̂�3, �̂�23, 𝑣23. 

• 3D RUC:  �̂�1, �̂�2, �̂�3, �̂�12, �̂�13, �̂�23, 𝑣12, 𝑣13, 𝑣23. 
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4.7 VALIDATION: ANALYTICAL MODELS  

Validation is a crucial step when modelling as it ensures that the model produced from 

the Python Script to Abaqus Standard software is accurate and reliable. This practice is 

common across different software and disciplines and has become a standard procedure. 

In the realm of computer-aided engineering (CAE), various approaches can be explored 

and implemented to ensure the integrity of the model, making it representative of the 

object being simulated. 

The primary approach for validation in this project is utilizing analytical models, 

specifically focusing on both single fiber and fiber hybrid composites. Despite the 

emphasis on fiber hybrid composites, validating the single fiber combinations (such as 

Basalt/Epoxy, Flax/Epoxy, Carbon/Epoxy, and E-glass/Epoxy) is important for two 

reasons. Firstly, readily available data for these single fiber combinations allows for 

confident comparisons, as data is collected from this paper. Secondly, since the volume 

fraction remains consistent for each fiber (e.g., 0.6 Vf for Basalt/Carbon/Epoxy with 0.3 

for Basalt and 0.3 for Carbon), comparing the homogenized properties of the fiber hybrid 

combination to those of its respective single fibre combinations ensures accuracy. This 

approach ensures that the homogenized properties generated from the fiber hybrid 

combination fall within the range of its individual single fiber combinations. 

For single fibre validation, a Solver was developed, detailed in Appendix B, utilizing two 

analytical models: Chamis and ROM, along with the inclusion of ROMm. As noted earlier 

in the section, analytical models inherently introduce errors due to the assumptions 

made for each. Therefore, a subsequent discussion below outlines the anticipated 

behaviours of the collected values, as elaborated in the following Section 5.2. 

Chamis, a widely recognized model stemming from the Rule of Mixture, shares 

assumptions related to linear elasticity and isotropic behaviour. Despite its foundation, 

Chamis faces challenges in accurately depicting the transverse plane of anisotropic 

composites. Though, as mentioned in sub-section 2.5.1 analytical models derived from 

the Rule of Mixture typically excel in representing axial parameters across 

straightforward geometries like the RUC. 

Rule of Mixture (ROM) simplifies predictions of composite material properties by 

combining constituent properties linearly. While effective for simple geometries and 
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axial properties, ROM falls short in complex geometries due to variations in fibre 

distribution and interactions. It also struggles with transverse properties due to 

composites' anisotropic nature. 

ROMm is an advancement over ROM as it integrates an experimental variable ξ to refine 

predictions. However, its effectiveness is hindered by the potential limitations of 

available data, raising concerns about the reliability of adjustments. Moreover, ROMm is 

likely to yield notable discrepancies in the transverse when compared to Finite Element 

Analysis (FEA) values. 

The preference for using software like Digimat for validating fibre hybrid composites 

stems from the complexity inherent in implementing its formulas in the 'Analytical 

Solver'. In Digimat, the analytical model employed is Mori-Tanaka, which derives 

homogenized properties of the composites by averaging the behaviours of their 

constituents. Consequently, the values derived from Mori-Tanaka represent 

homogenized engineering constants obtained from averaging both stress and strain 

tensors, assuming linear elasticity. 
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4.8  FLOW DIAGRAM OF MODELLING  
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5 RESULTS AND DISCUSSION 

Section 4 details the generation of 2D and 3D RUC models using a Python Script and 

Abaqus/Standard. The process involved the application of Periodic Boundary Conditions, 

Boundary Conditions, and Loading. The objective of this section is to comprehensively 

present all the data gathered from the Finite Element Analysis (FEA) simulations. The 

data is organized and presented as follows: 

5.1 Mesh Sensitivity Analysis, 

5.2 Validation: Repeating Unit Cells vs Analytical Models 

5.3 Fibre Hybrid Composites: Mechanical Behaviour. 

Section 5.2 possesses a single fiber and fiber hybrid validation, where FEA output data is 

compared side-by-side to commonly used analytical model across the industry. While 

Section 5.3 discusses the behaviour of the combination suggested in Section 3. 

5.1 MESH SENSITIVITY ANALYSIS 
Among the specimens utilized in the simulations, ‘iEHH_0.05_0.6_i’, employing the finest 

mesh with a mesh size of 0.05 and utilizing Hex-Dominated elements (CPE4R/CPE3 and 

C3D8R/C3D6) with reduced integration, is expected to yield the most accurate results. 

This choice aligns with the aim of achieving mesh-independent outcomes, as discussed in 

Section 4.2.4. 

Table 11: Number of elements for mesh size. 
 Global mesh Size (𝑖) 

Specimen ID 1.0 0.75 0.5 0.25 0.05 

BEHH_i_0.6_2 304 602 1054 4402 109013 

BEHH_i_0.6_3 186 427 817 3319 82315 

Table 12 displays the duration required to simulate each specimen across various mesh 

sizes. Unsurprisingly, as indicated in Table 11 and depicted in Figures 29 and 30, the total 

CPU time increases with the generation of more elements for the mesh. These simulations 

were conducted using an Intel i7-8700 @ 3.20GHz CPU. It’s important to note that the 

provided time excludes tasks such as outputting material properties and post-processing. 
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Table 12: Total CPU time for mesh sizes 1.0, 0.75, 0.5, 0.25, and 0.05 using Intel i7-8700 
@ 3.20GHz. 

Global mesh Size (𝑖) 1.0 0.75 0.5 0.25 0.05 

Specimen ID 
Fibre Mesh 

Element 

Matrix Mesh 

Element 
Time (s) 

BEHH_i_0.6_2 
Hex-Dom 

C2D3/CPS4 

Hex-Dom 

C2D3/CPS4 
0.1 0.2 0.6 1.1 3.5 

BCEHH_i_0.6_2 
Hex-Dom 

C2D3/CPS4 

Hex-Dom 

C2D3/CPS4 
0.1 0.2 0.6 1.1 3.5 

BEHH_i_0.6_3 
Hex-Dom 

C3D6/C3D8 

Hex-Dom 

C3D6/C3D8 
0.3 0.4 0.8 1.9 60.8 

BCEHH_i_0.6_3 
Hex-Dom 

C3D6/C3D8 

Hex-Dom 

C3D6/C3D8 
0.3 0.4 0.8 1.9 60.8 

 

 

Figure 29: 3D Mesh of BEHH_i_0.6_3 for (a) 1.00, (b) 0.75, (c) 0.50, (d) 0.25, (e) 0.05. 

 



70 
 

 

Figure 30: 2D Mesh of BEHH_i_0.6_2  for sizes: (a) 1.00, (b) 0.75, (c) 0.50, (d) 0.25, (e) 
0.05. 

In Figures 31 to 34 at the largest mesh size of 1.00, there are slight indications of 

asymmetry, although not as pronounced as discussed in Section 4.2.3. This reduction of 

asymmetry is attributed to the diagonal partitioning applied throughout the mesh, which 

effectively mitigated asymmetry between the mirrored faces. The presence of periodicity 

becomes evident when analysing the von Mises stress (𝜎𝑣𝑚) under the influence of a 

macro stress (𝜎2) applied to both the 2D and 3D RUC, as demonstrated in Section 4.1. As 

the mesh size increases, it meets the requirements outlined in Section 4.2.3, addressing 

the ‘two challenges’ associated with periodic boundary conditions. This observed trend 

persists across all examined specimens 'iEHH_i_0.6_3'. 

Table 13 includes all the absolute values of the homogenized properties obtained for both 

2D and 3D at all mesh settings considered in the mesh strategy. It is worth noting that for 

2D axial parameters are not generated as no thickness in introduced, and �̂�2 is equal to 

�̂�3. 
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Table 13: Results of mesh sensitivity for Basalt/Epoxy and Carbon/Epoxy RUC with 
volume fraction (𝑉𝑓) of 0.6 in GPa. 

Specimen Set 

𝑉𝑓 = 0.60 
�̂�1 �̂�2 �̂�3 �̂�12  �̂�13 �̂�23 𝑣12 𝑣13 𝑣23 

Baseline: 

BEHH_0.05_0.6_2 
- 15.28 15.28 - - 4.9   0.44 

BEHH_0.25_0.6_2 - 15.26 15.26 - - 4.93 -  0.44 

BEHH_0.50_0.6_2 - 15.29 15.29 - - 4.89 - - 0.44 

BEHH_0.75_0.6_2 - 15.26 15.26 - - 4.9 - - 0.44 

BEHH_1.00_0.6_2 - 15.18 15.18 - - 4.9 - - 0.44 

Baseline: 

BCEHH_0.05_0.6_2 
- 12.87 12.87 - - 4.04 - - 0.46 

BCEHH_0.25_0.6_2 - 12.86 12.86 - - 4.05 - - 0.46 

BCEHH_0.50_0.6_2 - 12.87 12.87 - - 4.03 - - 0.46 

BCEHH_0.75_0.6_2 - 12.84 12.84 - - 4.04 - - 0.46 

BCEHH_1.00_0.6_2 - 12.8 12.8 - - 4.03 - - 0.46 

Baseline: 

BEHH_0.05_0.6_3 
55.2 14.95 14.95 5.04 5.04 4.9 0.29 0.29 0.41 

BEHH_0.25_0.6_3 55.17 14.94 14.95 5.04 5.04 4.9 0.29 0.29 0.41 

BEHH_0.50_0.6_3 55.09 14.9 14.93 5.02 5.03 4.89 0.29 0.29 0.4 

BEHH_0.75_0.6_3 54.98 14.88 14.94 5 5.02 4.88 0.29 0.29 0.4 

BEHH_1.00_0.6_3 54.86 14.76 14.83 4.97 5.01 4.88 0.29 0.29 0.41 

Baseline: 

BCEHH_0.05_0.6_3 
115.57 12.79 12.49 5 4.96 4.17 0.28 0.27 0.45 

BCEHH_0.25_0.6_3 115.5 12.78 12.49 4.99 4.96 4.17 0.28 0.27 0.45 

BCEHH_0.50_0.6_3 115.43 12.75 12.47 4.98 4.95 4.16 0.28 0.27 0.45 

BCEHH_0.75_0.6_3 115.11 12.74 12.48 4.95 4.94 4.15 0.28 0.27 0.45 

BCEHH_1.00_0.6_3 187.23 10.97 10.98 4.91 4.92 3.69 0.25 0.25 0.49 

Table 14 displays the outcomes of the mesh sensitivity analysis, comparing the results of 

all mesh settings to the baseline. In the 2D analysis, the highest variation percentage 

occurs in the elastic modulus across the traverse plane, 𝐸2 and 𝐸3, with a value of 0.54%. 

Conversely, the lowest variation, 0%, is observed in the transverse Poisson’s ratio, 𝑣23. In 
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the 3D analysis, the largest variation, 2.44%, is observed in 𝑣23 , while the lowest 

variation, also 0%, is found in both Poisson’s ratios, 𝑣12  and 𝑣13 . Therefore, based on 

these results, the discrepancies between different mesh settings are relatively small, 

indicating that the outcomes are not significantly influenced by the mesh strategy. 

Table 14: FEA post-processing result variation compared to baseline mesh strategy 
BEHH_0.05_0.6_i in GPa. 

Average Variation 

(%) 
�̂�1 �̂�2 �̂�3 �̂�12  �̂�13 �̂�23 𝑣12 𝑣13 𝑣23 

Baseline: 

BEHH_0.05_0.6_2 
- - - - - - - - - 

BEHH_0.25_0.6_2 - 0.13 0.13 - - -0.61 - - 0 

BEHH_0.50_0.6_2 - -0.07 -0.07 - - 0.20 - - 0 

BEHH_0.75_0.6_2 - 0.13 0.13 - - 0 - - 0 

BEHH_1.00_0.6_2 - 0.66 0.66 - - 0 - - 0 

Baseline: 

BCEHH_0.05_0.6_2 
- - - - - - - - - 

BCEHH_0.25_0.6_2 - 0.08 0.08 - - -0.25 - - 0 

BCEHH_0.50_0.6_2 - 0 0 - - 0.25 - - 0 

BCEHH_0.75_0.6_2 - 0.23 0.23 - - 0 - - 0 

BCEHH_1.00_0.6_2 - 0.54 0.54 - - 0.25 - - 0 

Baseline: 

BEHH_0.05_0.6_3 
- - - - - - - - - 

BEHH_0.25_0.6_3 0.05 0.07 0 0 0 0 0 0 0 

BEHH_0.50_0.6_3 0.19 0.34 0.13 0.39 0.19 0.20 0 0 2.44 

BEHH_0.75_0.6_3 0.39 0.47 0.07 0.79 0.39 0.41 0 0 2.44 

BEHH_1.00_0.6_3 0.62 1.27 0.80 1.39 0.59 0.41 0 0 0 

Baseline: 

BCEHH_0.05_0.6_3 
- - - - - - - - - 

BCEHH_0.25_0.6_3 0.061 0.08 0 0.2 0 0 0 0 0 

BCEHH_0.50_0.6_3 0.12 0.31 0.16 0.4 0.20 0.24 0 0 0 

BCEHH_0.75_0.6_3 0.39 0.39 0.08 1 0.40 0.48 0 0 0 

BCEHH_1.00_0.6_3 0.63 1.02 0.64 1.4 0.61 0.48 0 0 0 
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Figure 31: Mesh Convergence of Transverse Elastic Modulus. 𝐸2, for (a) 3D and (b) 2D 

RUCs.  

As outlined in Sub-Section 4.2, the engineering constant under consideration is 

particularly volatile. Notably, this constant is applicable to both 2D and 3D models, as 

depicted in Figure 31, illustrating mesh convergence for both model types. 

Despite the minor disparities observed between mesh sizes of 0.25 and 0.05, it's notable 

that the finest mesh (0.05) necessitates a significantly larger number of elements. This 

increase directly correlates with a Total CPU time approximately 32 times longer than 

that required for the coarser mesh size (0.25). 

In the context of human timeframes, simulations lasting approximately 1 minute are 

typically considered "short-timed simulations". Hence, if time permits, opting for the 

finest mesh could yield slightly more accurate results. However, this decision must be 

balanced against the constraints of time and computational resources. Additionally, the 

slight differences between 2D and 3D values can be attributed to 2D being Plane Strain. 

In a scenario where the material is analysed in two dimensions and the macro-stress 

applied doesn't affect all three dimensions, with negligible thickness, the confinement 
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within the axial plane restricts deformation across this plane. Consequently, this 

confinement results in a stiffer transverse elastic modulus (𝐸2). 

As discussed in sub-Section 4.2, the engineering constant under scrutiny, given its 

fluctuating nature, is a crucial property for analysis to ensure accurate modelling. It's 

noteworthy that this engineering constant can be examined in both 2D and 3D 

simulations. Figure 31 illustrates the mesh convergence for both models. 

5.2 VALIDATION: REPEATING UNIT CELLS VS ANALYTICAL MODELS 

5.2.1 Validation for Single and Hybrid Fibers Composite 

In order to assure accuracy from the RUC Model, an analytical validation is performed to 

compare results for the homogenized properties of the composite. For the first validation, 

the composite is assumed to be non-hybrid (i.e., Fiber 1 and Fiber 2 are assigned the same 

Material properties), thus single fiber composite and in addition to assumptions 

mentioned in Section 4 Methodology. For single fiber composites, Rule of Mixture (ROM), 

Modified Rule of Mixture (ROMm) and Chamis will be the analytical models of choice. 

Whereas for fiber-hybrid composites, Mori-Tanaka will be analytical model used for 

validation, following the order Fiber2/Fiber1/Matrix, thus, reversed. The values 

obtained from the analytical models are directly compared with the homogenized 

properties derived from both 2D and 3D RUCs. Subsequently, there is an examination of 

the efficacy of the RUC model, which is elaborated upon in Section 5.2.2 and 5.2.3. 

5.2.2 Single Fiber Validation 

In the validation process for single fibres, we examine four types of composites: 

Basalt/Epoxy, Carbon/Epoxy, Flax/Epoxy, and Flax/E-glass, each in both 2D and 3D 

RUCs. The fiber volume fraction remains consistent at around 0.60 for all composites. We 

evaluate the homogenized properties obtained from Abaqus/Standard and compare 

them directly with analytical models, including Chamis (Ch), Rule of Mixture (ROM), and 

modified Rule of Mixture (ROMm). Tables 15 through 18 contain the data for both 

computational and analytical models, corresponding to each composite as indicated in 

the table descriptions. 

Table 15 Single Fiber Validation of Basalt/Epoxy composite shows the values from each 

model in absolute values, and in addition, the variation of each computational model in 
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comparison to each analytical model. Focusing on 2D RUC, which is capable of only 

generating transverse properties, a significant disagreement in visible when compared 

to ROM, with variation as high as 65%, and low as 36.50%. Whereas with Chamis model, 

lower variations are produced for elastic and shear modulus, ranging 3.11-6.61%, while 

a similar discrepancy to ROM is maintain with a variation of 38.97% for the transverse 

Poisson’s ratio. Regarding 3D, ROM is capable of showcasing similar results for axial 

properties: 𝐸1, 𝑣12  and 𝑣13  as expected, with variations ranging from 0 to 2.03%. 

Regarding the transverse properties, higher variations are produced, ranging from 30.11 

to 40.8%. Though, the largest variation is located at the in-plane shear modulus: 𝐺12 and 

𝐺13, with 43.75%.  

Figure 32 Maximum local von Mises stress for (a) 2D and (b) 3D RUC of Basalt/Epoxy, 

Figure 33 Maximum local von Mises stress for (a) 2D and (b) 3D RUC of Carbon/Epoxy,  

Figure 34 Maximum local von Mises stress for (a) 2D and (b) 3D RUC of Flax/Epoxy, and 

Figure 35 Maximum local von Mises stress for (a) 2D and (b) 3D RUC of E-glass/Epoxy 

for Mesh size 0.05 and Volume fraction 0.6 shows that within the von Mises stress 

distribution, an agreement on the concentration of stress is visible within the matrix, and 

different stresses maximums of 1.18 and 2.38 for Basalt/Epoxy, 1.05 and 2.33 for 

Carbon/Epoxy, 1.00 and 1.99 for Flax/Epoxy, and 1.17 and 2.40 for E-glass/Epoxy, for 

the 2D RUC and 3D RUC, respectively, are visible as expected due to the anisotropy 

reinforced polymers inherently possess from the fibre orientation, as the axial properties 

are captured in the 3D RUC. 
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Figure 32: Maximum local von Mises stress for (a) 2D and (b) 3D RUC of Basalt/Epoxy 
for Mesh size 0.05 and Volume fraction of 0.6. 

 

Table 15: Single Fiber Validation of Basalt/Epoxy composite. 

 Basalt/Epoxy  

Proper

ty 

ROM & 

ROMm 

(ξ=1) 

Chamis 
2D 

RUC 

ROM 

Diff. 

(%) 

Ch 

Diff. 

(%) 

3D 

RUC 

ROM 

Diff. 

(%) 

Ch 

Diff. 

(%) 

𝐸1 𝐺𝑃𝑎 55.120 55.12 - - - 55.2 0 0 

𝐸2 𝐺𝑃𝑎 10.024 16.361 15.23 52.43 -6.61 14.95 30.11 -8.62 

𝐸3 𝐺𝑃𝑎 10.024 16.361 15.23 52.43 -6.61 14.95 30.11 -8.62 

𝐺12 𝐺𝑃𝑎 2.961 4.752 - - - 5.04 43.75 6.06 

𝐺13 𝐺𝑃𝑎 2.961 4.752 - - - 5.04 43.75 6.06 

𝐺23 𝐺𝑃𝑎 2.961 4.752 4.3 65.48 3.11 4.9 40.80 3.11 

𝑣12 0.296 0.296 - - - 0.29 -2.03 -2.03 

𝑣13 0.296 0.296 - - - 0.29 -2.03 -2.023 

𝑣23 0.693 0.721 0.44 -36.50 -38.97 0.41 -39.25 -43.14 
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Table 16, which presents the Single Fiber Validation of Carbon/Epoxy composite, 

illustrates that the computational model aligns closely with the Chamis model across all 

homogenized properties, except for the transversal Poisson’s ratio 𝑣23 ,. For this 

parameter, variations range from 0.14% to 7.93% across both 2D and 3D RUCs. However, 

when compared to the ROM model, the variations for 𝐸1 , 𝑣12  and 𝑣13  remain low at 

0.14%, 3.85%, and 3.85%, respectively. Conversely, the variations for the other 

properties range between 21.72% and 59.55%. 

 

 

Figure 33: Maximum local von Mises stress for (a) 2D and (b) 3D RUC of Carbon/Epoxy 
for mesh size 0.05 and Volume fraction of 0.6. 

Table 16: Single Fiber Validation of Carbon/Epoxy composite. 

 Carbon/Epoxy  

Proper

ty 

ROM & 

ROMm 

(ξ=1) 

Chamis 
2D 

RUC 

ROM 

Diff. 

(%) 

Ch 

Diff. 

(%) 

3D 

RUC 

ROM 

Diff. 

(%) 

Ch 

Diff. 

(%) 

𝐸1 𝐺𝑃𝑎 175.7 175.7 - - - 175.9 0.14 0.14 

𝐸2 𝐺𝑃𝑎 8.224 11.198 10.32 25.73 -7.66 10.31 25.37 -7.93 

𝐸3 𝐺𝑃𝑎 8.224 11.198 10.32 25.73 -7.66 10.31 25.37 -7.93 

𝐺12 𝐺𝑃𝑎 2.833 4.347 - - - 4.52 59.55 3.98 
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𝐺13 𝐺𝑃𝑎 2.833 4.347 - - - 4.52 59.55 3.98 

𝐺23 𝐺𝑃𝑎 2.530 3.512 3.1 36.76 -1.48 3.46 36.76 -1.48 

𝑣12 0.26 0.26 - - - 0.25 -3.85 -3.85 

𝑣13 0.26 0.26 - - - 0.25 -3.85 -3.85 

𝑣23 0.626 0.723 0.49 -21.73 -17.51 0.49 -21.72 -17.51 

 

In Table 17, which presents the Single Fiber Validation of Flax/Epoxy composite, it is 

observed that the computational and analytical results are quite similar. Variations 

across all homogenized properties, for ROM and Chamis, ranging from 0% to 11.48%, 

with the exception of the axial shear modulus 𝐺12 and 𝐺13, which exhibit a variation of 

17.86%. 

Table 17: Single Fiber Validation of Flax/Epoxy composite. 

 Flax/Epoxy  

Proper

ty 

ROM & 

ROMm 

(ξ=1) 

Chamis 
2D 

RUC 

ROM 

Diff. 

(%) 

Ch 

Diff. 

(%) 

3D 

RUC 

ROM 

Diff. 

(%) 

Ch 

Diff. 

(%) 

𝐸1 𝐺𝑃𝑎 34.180 34.180 - - - 34.22 0.12 0.12 

 

Figure 34:  Maximum local von Mises stress for (a) 2D and (b) 3D RUC of Flax/Epoxy  
for mesh size 0.05 and Volume fraction of 0.6. 
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𝐸2 𝐺𝑃𝑎 5.595 6.132 6.08 8.67 -0.85 5.97 6.70 -2.64 

𝐸3 𝐺𝑃𝑎 5.595 6.132 6.08 8.67 -0.85 5.97 6.70 -2.64 

𝐺12 𝐺𝑃𝑎 1.960 2.310 - - - 2.31 17.86 0 

𝐺13 𝐺𝑃𝑎 1.960 2.310 - - - 2.31 17.86 0 

𝐺23 𝐺𝑃𝑎 1.639 1.779 1.67 11.04 2.31 1.82 11.04 2.31 

𝑣12 0.320 0.320 - - - 0.32 0 0 

𝑣13 0.320 0.320 - - - 0.32 0 0 

𝑣23 0.707 0.723 0.67 -5.23 -7.33 0.64 -9.48 -11.48 

 

Finally, Table 18, illustrating the Single Fiber Validation of E-glass/Epoxy composite, 

reveals the most substantial variations among the four tables. Notably, the variation 

reaches as high as 76.84% for the axial shear modulus 𝐺12 and 𝐺13 in the ROM model. 

Conversely, when compared to the Chamis model, variations range from negligible to 

2.64%, except for the transversal Poisson’s ratio 𝑣23, which exhibits variations of 11.48% 

and 7.33% for 3D and 2D models respectively.  

 

Figure 35: Maximum local von Mises stress for (a) 2D and (b) 3D RUC of E-glass/Epoxy 
for mesh size 0.05 and Volume fraction of 0.6. 

 

Table 18: Single Fiber Validation of E-glass/Epoxy composite. 
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 E-glass/Epoxy  

Proper

ty 

ROM & 

ROMm 

(ξ=1) 

Chamis 
2D 

RUC 

ROM 

Diff. 

(%) 

Ch 

Diff. 

(%) 

3D 

RUC 

ROM 

Diff. 

(%) 

Ch 

Diff. 

(%) 

𝐸1 𝐺𝑃𝑎 45.520 45.520 - - - 45.59 0.15 0.15 

𝐸2 𝐺𝑃𝑎 9.877 15.865 14.77 50.15 -6.52 14.5 46.81 -8.60 

𝐸3 𝐺𝑃𝑎 9.877 15.865 14.77 50.15 -6.52 14.5 46.81 -8.60 

𝐺12 𝐺𝑃𝑎 3.031 4.991 - - - 5.36 76.84 7.39 

𝐺13 𝐺𝑃𝑎 3.031 4.991 - - - 5.36 76.84 7.39 

𝐺23 𝐺𝑃𝑎 3.031 4.991 4.54 71.23 3.99 5.2 71.56 4.19 

𝑣12 0.278 0.278 - - - 0.27 -2.88 -2.88 

𝑣13 0.278 0.278 - - - 0.27 -2.88 -2.88 

𝑣23 0.629 0.590 0.43 -31.64 -27.12 0.4 -36.41 -32.20 

5.2.3 Fiber Hybrid Validation 

Table 19 Fiber-hybrid Validation of Basalt/Carbon/Epoxy composite shows the data for 

both Mori-Tanaka’s analytical model and both 2D and 3D RUCs where it is possible to see 

that a large agreement between the 3 is captured across the tables where the variation 

ranges from 0.09 to 6.21%. Concluding that both computation and analytical models were 

capable of representing accurately the mechanical behaviour of the composite at hand 

(Basalt/Carbon/Epoxy). 

Figure 36: Maximum local von Mises stress for (a) 2D and (b) 3D RUC of 

Basalt/Carbon/Epoxy and Figure 37: Maximum local von Mises stress for (a) 2D and (b) 

3D RUC of Flax/E-glass/Epoxy for mesh size 0.05 and Volume fraction 0.6 show that 

within the von Mises stress distribution, an agreement on the concentration of stress is 

visible within the matrix, and different stresses maximums of 1.38 and 2.66 for 

Basalt/Carbon/Epoxy and 1.57 and 3.47 for Flax/E-glass/Epoxy for the 2D RUC and 3D 

RUC, respectively, are visible as expected due to the anisotropy reinforced polymers 

inherently possess as the axial properties are captured in the 3D RUC. paraphrase 
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Figure 36: Maximum local von Mises stress for (a) 2D and (b) 3D RUC of 
Basalt/Carbon/Epoxy for mesh size 0.05 and Volume fraction of 0.6. 

 

Table 19: Fiber-hybrid Validation of Basalt/Carbon/Epoxy composite.  

Basalt/Carbon/Epoxy 

Property 
Mori-

Tanaka 
2D RUC 

Variation 

(%) 
3D RUC 

Variation 

(%) 

𝐸1 (𝐺𝑃𝑎) 115.46 - - 115.57 0.09 

𝐸2 (𝐺𝑃𝑎) 12.118 12.87 6.21 12.79 5.55 

𝐸3 (𝐺𝑃𝑎) 12.118 12.87 6.21 12.49 3.07 

𝐺12 (𝐺𝑃𝑎) 4.9802 - - 5.00 0.39 

𝐺13 (𝐺𝑃𝑎) 4.9802 - - 4.96 -0.41 

𝐺23 (𝐺𝑃𝑎) 4.109 4.04 -1.68 4.17 1.48 

𝑣12 0.2748 - - 0.28 1.89 

𝑣13 0.2748 - - 0.27 -1.74 

𝑣23  0.4746 0.46 -3.08 0.45 -5.18 

 

Table 20 Fiber-hybrid Validation of Flax/E-glass/Epoxy composite shows a direct 

comparison between Flax/E-glass/Epoxy for 2D and 3D RUCs against Mori-Tanaka 

analytical model. For 2D, variations from 5.47 to 20.55%. Where the largest variation is 
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attributed to the out-of-plane shear modulus. While an agreement between the 2D model 

and Mori-Tanaka model is captured from out-of-plane Poisson’s ratio as well as elastic 

modulus 𝐸2 and 𝐸3. 

 

Figure 37:  Maximum local von Mises stress for (a) 2D and (b) 3D RUC of Flax/E-glass 
/Epoxy. 

 

Table 20: Fiber-hybrid Validation of Flax/E-glass/Epoxy composite. 

Flax/E-glass/Epoxy 

Property 
Mori-

Tanaka 
2D RUC 

Variation 

(%) 
3D RUC 

Variation 

(%) 

𝐸1 (𝐺𝑃𝑎) 39.876 - - 39.91 0.09 

𝐸2 (𝐺𝑃𝑎) 9.9343 10.70 7.71 10.47 5.39 

𝐸3 (𝐺𝑃𝑎) 9.9343 10.70 7.71 9.85 -0.85 

𝐺12 (𝐺𝑃𝑎) 3.8125 - - 3.74 -1.90 

𝐺13 (𝐺𝑃𝑎) 3.8125 - - 3.26 -14.49 

𝐺23 (𝐺𝑃𝑎) 3.2851 2.61 -20.55 2.61 -20.55 

𝑣12 0.2645 - - 0.29 9.64 

𝑣13 0.2645 - - 0.3 13.42 

𝑣23  0.51202 0.54 5.47 0.5 -2.35 
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5.2.4 Discussion of Single and Fiber Hybrid for 2D and 3D RUCs  

In Section 5.2.2 and Section 5.2.3, both 2D and 3D RUCs undergo validation using 

analytical models outlined in Section 2.5. However, an additional examination delves into 

the significant discrepancies observed in the transverse homogenized properties for 

single fiber validation, particularly regarding the ROM and ROMm models. While Chamis' 

models generally exhibit lower variations across most homogenized properties, there's a 

notable exception with the transverse Poisson’s Ratio, 𝑣23 , necessitating further 

investigation. In the context of Fiber Hybrid validation, there's a stronger agreement 

between computational and analytical models, except for considerable variations 

observed in the axial shear moduli 𝐺12  and 𝐺13  for Flax/E-glass/Epoxy composites, 

warranting a detailed discussion. 

Table 21 presents the aggregated data from single fiber validation, where we calculated 

the average variation across all four combinations for both the Rule of Mixture and 

Chamis models. This approach aims to capture the overall trend observed in the 

analytical models. 

Table 21; Average Variation from 2D and 3D RUCs against ROM, ROMm, Chamis and 
Mori-Tanaka. 

Average Variation (%) 

Property 
ROM & ROMm 

(ξ=1) 
Chamis Mori-Tanaka 

𝐸1 (𝐺𝑃𝑎) 0.1025 0.1025 0.09 

𝐸2 (𝐺𝑃𝑎) 30.74625 6.17875 6.215 

𝐸3 (𝐺𝑃𝑎) 30.74625 6.17875 4.46 

𝐺12 (𝐺𝑃𝑎) 49.5 4.3575 1.145 

𝐺13 (𝐺𝑃𝑎) 49.5 4.3575 7.45 

𝐺23 (𝐺𝑃𝑎) 43.08375 2.81 11.065 

𝑣12 2.19 2.19 5.765 

𝑣13 2.19 2.18825 7.58 

𝑣23 25.24625 24.4075 4.02 
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Table 21 illustrates the notable consistency among analytical models in accurately 

predicting the axial Young's Modulus (E₁), with variations hovering around ~0.1%. This 

stability arises from the shared assumption across models, where fibres and matrices are 

presumed to align parallelly, minimizing volatility in this property. However, due to the 

inadequate representation of the transverse plane in the Rule of Mixture (ROM), 

significant disparities emerge for E₂, E₃, G₂₃, and ν₂₃. In contrast, the Chamis model 

demonstrates reduced variation in these properties, owing to its utilization of a nonlinear 

relationship between fiber volume fraction and transversal properties. As anticipated, 

ROM exhibits subpar performance in computing in-plane shear moduli (G₁₂ and G₁₃), 

attributed to the nonlinear behaviour of unidirectional laminae under high shear stress 

levels, particularly in materials like Carbon/Epoxy with high carbon strength. Substantial 

variations are evident in out-of-plane properties (G₂₃ and ν₂₃), primarily due to 

experimental parameters where suboptimal values were selected for adjustment. 

To visually depict the trends observed across all considered models, Figures 38 to 43 

were generated, showcasing the nine independent homogenized properties derived. 

Notably, the 2D RUC model generates only four constants instead of nine, as detailed in 

Section 4.1. Consequently, instead of a connecting line, green triangles are employed to 

indicate the constants produced by the 2D RUC model. 

Single fiber validation reveals that the Chamis model and Finite Element Analysis (FEA) 

models generate comparable contours, with slight over and underestimations. 

Conversely, the Rule of Mixture (ROM) values align closely with the majority of models 

for axial Young's Modulus but exhibit significant underestimation across transverse 

properties. Specifically, the ROM model underestimates all shear moduli, transverse 

Young's Modulus, and overestimates the transverse Poisson's ratio in comparison to the 

FEA models. 

In the realm of composite materials, characterized by extensive microscale assumptions, 

the observed variations resulting from the comparison between computational and 

analytical models align with expectations. Notably, a robust agreement between the two 

is attained, affirming that the design of RUCs models effectively captures the behaviour 

of composite laminae with accuracy. 
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Figure 38: Spider plot for the homogenised properties of Basalt/Epoxy for Volume 

fraction 0.6. 

 

 

Figure 39: Spider plot for the homogenised properties of Carbon/Epoxy for Volume 

fraction 0.6. 
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Figure 40: Spider plot of the homogenised properties of Flax/Epoxy for Volume fraction 

0.6. 

 

Figure 41: Spider plot of the homogenised properties of E-glass/Epoxy for Volume 
fraction 0.6. 
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Figure 42: Spider plot of the homogenised properties of Basalt/Carbon/Epoxy for 

Volume fraction 0.6. 

 

Figure 43: Spider plot of the homogenised properties of Flax/E-glass/Epoxy for Volume 

fraction 0.6. 
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5.3 MICRO STRESS FIELD WITHIN RUC UNDER TENSION LOADING 

Figure 44: Maximum local von Mises under tension loading for composites: (a) 

Basalt/Carbon/Epoxy, (b) Flax/E-glass/Epoxy, (c) Basalt/E-Glass/Epoxy , and (d) 

Flax/Carbon/Epoxy using 2D RUC and Figure 45: Maximum local von Mises under 

tension loading for composites: (a) Basalt/Carbon/Epoxy, (b) E-glass/Flax/Epoxy, (c) 

Basalt/E-Glass/Epoxy , and (d) Carbon/Flax/Epoxy using 3D RUC shows the von Mises 

stress distribution under pure tension by applying macro-stress σ̂2 , for all four 

combinations of fibre hybrid composites. The maximum stress points are shown by the 

arrows located in each plot. 

  

  
 

Figure 44: Maximum local von Mises under tension loading for composites: (a) 

Basalt/Carbon/Epoxy, (b) Flax/E-glass/Epoxy, (c) Basalt/E-Glass/Epoxy , and (d) 

Flax/Carbon/Epoxy using 2D RUC. 
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Figure 45: Maximum local von Mises under tension loading for composites: (a) 

Basalt/Carbon/Epoxy, (b) E-glass/Flax/Epoxy, (c) Basalt/E-Glass/Epoxy , and (d) 

Carbon/Flax/Epoxy using 3D RUC.  

Table 22 provides the homogenized properties for the four combinations considered in 

this paper for Natural and Synthetic fiber hybrid composite laminae for the two Repeating 

Unit Cells considered: 2D and 3D. 
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Table 22: Homogenized Properties of Basalt/Carbon/Epoxy, Flax/E-glass/Epoxy, 
Basalt/E-Glass/Epoxy , and Flax/Carbon/Epoxy. 

Homogenized 

Properties 
�̂�1 �̂�2 �̂�3 �̂�12  �̂�13 �̂�23 𝑣12 𝑣13 𝑣23 

2D RUC 

Basalt/Carbon/

Epoxy 
- 12.87 12.87 - - 4.04 - - 0.46 

Flax/ 

E-glass/Epoxy 
- 10.70 10.70 - - 2.61 - - 0.54 

Basalt/ 

E-Glass/Epoxy 
- 15.06 15.06 - - 5.04 - - 0.43 

Flax/Carbon/ 

Epoxy 
- 8.13 8.13 - - 2.59 - - 0.58 

3D RUC 

Basalt/Carbon/

Epoxy 
115.6 12.79 12.49 5.00 4.96 4.17 0.28 0.27 0.45 

Flax/ 

E-glass/Epoxy 
39.91 10.47 9.85 3.74 3.26 2.61 0.29 0.30 0.50 

Basalt/ 

E-Glass/Epoxy 
50.4 14.74 14.73 5.43 5.43 5.27 0.28 0.28 0.40 

Flax/Carbon/ 

Epoxy 
105.1 8.24 8.15 3.36 3.08 2.35 0.28 0.29 0.57 

 

Similarly, Table 22 is visually added by the Spider plots Figure 46: Spider Plot for the 

homogenized properties of Basalt/Carbon/Epoxy, Flax/E-glass/Epoxy, Basalt/E-

Glass/Epoxy, and  Flax/Carbon/Epoxy using 2D RUC and Figure 47: Spider Plot for the 

homogenized properties of Basalt/Carbon/Epoxy, Flax/E-glass/Epoxy, Basalt/E-

Glass/Epoxy , and Flax/Carbon/Epoxy using 3D RUC where the homogenized proportion 

for each combination, and each axis is normalized for the appropriate range of each 

engineering constant. 
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Figure 46: Spider Plot for the homogenized properties of Basalt/Carbon/Epoxy, Flax/E-
glass/Epoxy,  Basalt/E-Glass/Epoxy, and Flax/Carbon/Epoxy using 2D RUC. 

 

Figure 47: Spider Plot for the homogenized properties of Basalt/Carbon/Epoxy, Flax/E-
glass/Epoxy, Basalt/E-Glass/Epoxy, and Flax/Carbon/Epoxy using 3D RUC. 
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5.3.1 Discussion and Conclusions 

In this section, we analyse the results derived from the simulations conducted using 

Abaqus/Standard. We interpret how the selection of different fibres influences the von 

Mises stresses experienced by the matrix, which remains consistent across all 

simulations (i.e., Epoxy). Specifically, the locations of local maximum stresses 

encountered are pinpointed. 

The discussion will focus on contrasting the effects of single-fiber and fiber-hybrid 

composites when subjected to a macro-stress, specifically in pure tension. As well as the 

individual capabilities of each combination of fiber-hybrid composites to others. 

The disparity in local maximum von Mises stresses between the 2D representation of the 

transverse plane and the 3D model with thickness stems from several factors. In the 

simplified 2D RUC, stress concentrations at discontinuities, such as fiber-matrix 

interfaces, lead to localized areas of high stress, resulting in elevated von Mises stresses 

as shown in Figure 44. Additionally, the 2D model neglects out-of-plane effects present in 

the 3D model, such as bending and shear stresses, leading to an underestimation of 

stresses. Moreover, boundary conditions applied to the models influence stress 

distributions, with the 2D model restricting deformation in the out-of-plane direction due 

to the Boundary Condition applied, in Section 4.5. Consequently, the transition to a 3D 

representation with thickness allows for a more comprehensive analysis of material 

behaviour, facilitating a better understanding of stress distributions and potential von 

Mises stress concentrations. It is worth noting that von Mises stresses are used as it is 

particularly useful for ductile materials such as Epoxy resin, exhibiting its linear 

deformation prior to fracture, which is not studied in this paper. 

This said, a discussion between the von Misses stresses exhibited by the matrix (i.e. 

Epoxy) in both single fiber and fiber-hybrid composites is conducted below. 

When Basalt is paired with Carbon fibres, local von Mises stresses peak at 1.38 and 2.66 

for 2D and 3D setups respectively, close to the Basalt region, as depicted in Figure 45 (a). 

In contrast, single fiber Carbon/Epoxy configurations register maximums of 1.05 and 

2.33. This indicates that the matrix experiences higher stress levels of 31.4% and 14.1% 

respectively, owing to the differential load sharing among fibres. These elevated stresses 

are observed nearer to the fiber with the higher transversal elastic modulus ( 𝐸2 ), 



93 
 

indicating that a stiffer component offers greater resistance to deformation. For instance, 

near Basalt, which has an 𝐸2 of 89 GPa compared to Carbon's 21 GPa, this difference is 

more than fourfold. A similar pattern is evident in Flax/Carbon/Epoxy combinations, 

where Flax, with an 𝐸2 of 7 GPa (three times smaller than Carbon's), contributes to higher 

von Mises stresses of 20% and 36.5% in 2D and 3D respectively, compared to 

Carbon/Epoxy setups. These stress peaks are typically found near the Carbon fiber, as 

illustrated in Figure 45 (c). 

Similarly, both Basalt and Flax are combined with E-glass, yielding the following results. 

Basalt/E-glass/Epoxy setups show a slight increase in maximum local von Mises stresses 

of 1.7% and 3% for 2D and 3D configurations respectively, compared to E-glass/Epoxy 

setups. However, with Flax, the increase is more significant, with maximum local von 

Mises stresses rising by 34.2% and 44.6% for 2D and 3D configurations respectively. In 

the case of Basalt, the higher stresses are typically located near the Basalt due to a 1.2 

times greater increase in 𝐸2 compared to E-glass. Conversely, for Flax setups, the highest 

stresses occur near the E-glass because E-glass has a transversal elastic modulus several 

times higher than that of Flax. It's important to note that the increase in stresses for 

Basalt/E-glass/Epoxy setups is relatively small, mainly due to the minor difference in 

transversal elastic modulus (𝐸2) between Basalt and E-glass. On the other hand, Flax/E-

glass setups experience a more substantial increase in stresses, primarily because of the 

significant differences between their 𝐸2 values. 

As all combinations are compared, a discussion about each homogenized property and 

the trends captured from the combinations is provided below. 

• Axial Elastic Modulus (�̂�1): 

The combinations with carbon fibres achieved the highest axial Young's modulus (�̂�1). 

Carbon fibers are known for their exceptionally high stiffness and strength, contributing 

significantly to the overall stiffness of the composite across the axial plane. 

The high modulus of carbon fibres results in stiffening the composite along the axial 

direction, leading to higher values of �̂�1  of 115.6 and 105.1 𝐺𝑃𝑎 when combined with 

Basalt and Flax respectively. When compared to single fiber composites Basalt/Epoxy 

and Flax/Epoxy an improvement in �̂�1 of 109.4% and 208.5% is visible, respectively. 
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As for E-glass, its fibres are known for their moderate stiffness and are typically not as 

stiff as carbon fibre. Thus, composites containing E-glass fibres exhibited lower axial 

Young's modulus values of 39.91 and 50.4 𝐺𝑃𝑎  when combined with Flax and Basalt, 

respectively. This said, an improvement from single fiber E-glass/Epoxy is capture when 

the use of basalt fibres is used for hybridization, of 10.6%. Whereas a reduced in 

transversal of Young’s modulus by 14.2% is visible when combined with Flax.  

• Transversal Young's Modulus (�̂�2, �̂�3): 

Basalt combinations also scored better properties for transversal Young's modulus (�̂�2, 

�̂�3), with values of 12.79 and 12.49 𝐺𝑃𝑎 for �̂�2 and �̂�3 respectively when combined with 

Carbon fibres, and 14.74 and 14.73 for �̂�2 and �̂�3 respectively when combined with E-

glass. Basalt fibres contribute to the overall stiffness of the composite in the transverse 

direction when compared to a single fiber E-glass/Epoxy composite, scoring 14.5 𝐺𝑃𝑎 for 

both 𝐸2 and 𝐸3, thus a slight improvement of 1.5% percent. 

The higher transversal Young's modulus values in basalt combinations reflect the 

enhanced stiffness and rigidity of the composite in directions perpendicular to the fiber 

orientation. 

Similar to the axial Young's modulus, the low scoring of flax combinations in transverse 

Young's modulus (�̂�2, �̂�3) can be attributed to the lower stiffness of flax fibres compared 

to carbon and basalt fibres. Flax fibres are less effective in resisting breakage in the 

transverse direction, resulting in lower transverse Young's modulus values. 

• Transverse Poisson’s Ratio (𝑣23): 

The combinations with flax fibres scored the highest transverse Poisson’s ratio (𝑣23). Flax 

fibers typically have a higher transversal Poisson ratio compared to carbon or basalt 

fibres as shown in table 6, where Flax has 0.75 and Carbon 0.49. 

Flax fibres possess intrinsic flexibility and compliance, allowing them to accommodate 

transverse deformations more effectively, and thus expand, resulting in a higher 

transverse Poisson ratio. Improving single fiber Carbon/Epoxy by 16.3% when Flax is 

introduced for hybridization.  

Basalt combinations scoring the lowest transversal Poisson's ratios suggesting a 

potential lack of deformation in these materials. Basalt fibres are isotropic, and in 
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addition to this, they offer excellent strength and stiffness properties, scoring low 

deformation across both its axial and transversal plane, and thus, influencing in this way 

to the fiber-hybrid composites where it is introduced. When it comes to the transverse 

deformation, E-glass/Epoxy and Basalt/E-glass/Epoxy remain with the same Poisson’s 

ratio of 0.40, while in comparison to Carbon/Epoxy, Basalt/Carbon/Epoxy produces a 

less deformable material with a reduction of 8.8%. 

• Axial Poisson's Ratio (𝑣12, 𝑣13): 

Flax combinations achieved a slight advantage in axial Poisson's ratio. This is attributed 

to the natural compliance and flexibility of Flax fibres as mentioned above, allowing them 

to undergo greater deformation in response to axial loading, which can eventually work 

as bridging elements if fracture occurs. Flax shows improvement to Carbon and E-glass 

single fiber composites of 16% and 7.4% respectively. 

The slight advantage of flax combinations in axial Poisson's ratio suggests a higher degree 

of axial compressibility compared to Carbon or Basalt combinations. 

Basalt combinations scoring the lowest Poisson's ratios (both axial and transverse) 

suggests a potential lack of transverse isotropy in these materials. This said, Basalt is 

keener to deformation in the axial plane than Carbon and E-glass still improving its 

deformation when Carbon/Epoxy and E-glass/Epoxy are considered, by 12% and 3.7% 

respectively. 

• Axial and Transverse Shear Modulus (�̂�12, �̂�13, �̂�23): 

Basalt combinations exhibited better properties for both axial and transversal shear 

modulus (�̂�12, �̂�13, and �̂�23). Basalt fibres have excellent shear resistance and interfacial 

bonding with the epoxy matrix. 

The higher shear modulus values in basalt combinations indicate greater resistance to 

shear deformation, resulting in improved structural stability and stiffness in both axial 

and transverse directions. Moreover, when combined with Carbon fibres an improve of 

10.6%, 9.7% and 20.5% is captured for �̂�12 , �̂�13, and �̂�23  respectively. Similarly, when 

combined with E-glass an improvement of 1.3%, 1.3% and 1.3% is visible for �̂�12, �̂�13, 

and �̂�23 respectively, to their single fiber counterparts. 
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Flax combinations scoring the lowest shear modulus (both axial and transverse) is 

consistent with the lower stiffness of flax fibres compared to Carbon and Basalt fibres, 

scoring reductions of 25.7%, 31.9% and 32% for �̂�12, �̂�13, and �̂�23 respectively against 

the single fiber Carbon/Epoxy and 30.2%, 39.2% and 49.8% for �̂�12 , �̂�13 , and �̂�23 

respectively against the single fiber E-glass/Epoxy. Shear modulus is related to the 

material's resistance to deformation under shear stress, and the lower stiffness of Flax 

fibres contributes to lower shear modulus values in the composite. 

The observed trends can be attributed to the inherent properties of each constituent 

material and their interactions within the composite structure. Carbon fibres provide 

high stiffness and strength, Flax fibres offer flexibility and compliance, Basalt fibres 

contribute to shear resistance and stiffness and E-glass a moderate stiffness. The 

combination of these materials in different configurations leads to variations in 

mechanical properties, highlighting the importance of material selection and composite 

design in achieving desired performance characteristics. Additionally, the presence of 

multiple fiber types in each combination may lead to complex interactions, resulting in 

unique mechanical behaviour such as anisotropy (i.e. Flax/Carbon/Epoxy) or isotropy 

(i.e. Basalt/E-glass/Epoxy) depending on the specific arrangement and orientation of 

fibres within the composite structure. 

6 CONCLUSIONS AND FURTHER RESEARCH 

6.1 CONCLUSIONS 

The comparative analysis of transverse and axial elastic lamina constants, conducted 

through computational models 2D and 3D Repeating Unit Cells capable of generating the 

intra-laminar fiber hybrid unidirectional composite laminae, and analytical models such 

as Rule of Mixture, modified Rule of Mixture, Chamis, and Mori-Tanaka, demonstrates a 

robust agreement between computational and analytical methodologies. This alignment 

underscores the reliability and accuracy of both approaches in predicting the transverse 

behaviour of fiber hybrid composites, and more importantly the reliability of the models 

created for this paper. 

This study sheds light on the behaviour of fibre hybrid composites with Fibre Volume 

fraction of 60% ( 𝑉𝑓 = 0.60 ), showcasing the advantages of incorporating 
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environmentally friendly fibres alongside synthetic ones and highlighting their 

performance capabilities of the following composites: Basalt/Carbon/Epoxy, Flax/E-

glass/Epoxy, Basalt/E-glass/Epoxy, and Flax/Carbon/Epoxy. By demonstrating the 

potential for enhanced structural applications during pure tension, this research expands 

our understanding of utilizing natural fibres in composite materials. 

When comparing homogenized properties, the introduction of natural fibres in 

hybridization with commonly used synthetic fibres reveals both improvements and 

reductions. Basalt fibres exhibit a consistent increase in composite stiffness (�̂�1, �̂�2 and 

�̂�3), deformation reduction (𝑣12, 𝑣12 and 𝑣23) and improved shear resistance (�̂�12, �̂�13, 

and �̂�23). 

While flax fibres, known for their deformable and 'ropey' nature, provide enhancements 

in the deformation across the axial and transverse Poisson’s ratios (𝑣12 , 𝑣12  and 𝑣23), 

while significantly decreasing the material stiffness (�̂�1, �̂�2 and �̂�3) and shear resistance 

(�̂�12, �̂�13, and �̂�23) across its two combinations when compared to the single fibre of its 

partnered constituents. 

Considering the advantages and disadvantages of each fibre type, the combinations 

presented in this study offer attractive prospects for a wide range of applications across 

various sectors. The conglomerate of combinations utilizing both natural and synthetic 

fibres in fiber hybrid reinforced polymer composites showcases diverse mechanical 

properties, encouraging discussions on their capabilities and stimulating ideas for 

potential applications. From energy absorption to thermal, electrical, and acoustic 

insulation, as well as high or low deformability applications, presenting promising 

opportunities for innovation and advancement in composite materials technology. 

6.2 LIMITATIONS 

The simplification of volume fraction constraints for fibres and matrix materials, 

although necessary for computational modelling, assumes uniform distribution and 

perfect bonding, potentially neglecting real-world variability and interface complexities. 

Similarly, the assumption of homogeneous fibres and matrix materials simplifies analysis 

but may overlook variations in material properties arising from manufacturing 

processes, impurities, or inhomogeneities. Moreover, ignoring potential hollowness and 

defects within fibres leads to an oversimplified representation of the composite's 
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mechanical behaviour, overlooking factors crucial for stiffness and strength. Additionally, 

the limited material selection, while encompassing materials like flax, basalt, carbon, and 

E-glass fibres with an epoxy matrix, may restrict the generalizability of findings to a 

broader range of fiber-hybrid composites. Recognizing that Repeating Unit Cells may not 

fully capture composite behaviour compared to more complex representative volumes is 

pivotal. Discussing discrepancies and limitations between unit cells and representative 

volume elements (RVEs) would bolster the dissertation's rigor. Furthermore, 

acknowledging the simplifying assumptions about continuous, defect-free, cylindrical 

fibres with perfect interphase bonding is essential, as they may oversimplify the real-

world complexities of fiber-hybrid composites, affecting the accuracy and applicability of 

findings. Addressing modelling limitations inherent in finite element analysis, such as 

mesh dependency, convergence issues, and numerical artifacts, is crucial for result 

interpretation. Moreover, navigating the complex interactions between fibres, matrix, 

and interphase presents interpretation challenges, underscoring the importance of 

discussing both experimental and computational results within this context to glean 

valuable insights. Additionally, reliance on analytical models, while beneficial, comes with 

inherent errors. Therefore, incorporating experimental data for validation could enhance 

the accuracy of Finite Element Analysis (FEA) models, ensuring they faithfully represent 

the discussed composites. This integration of experimental validation would further 

bolster confidence in the FEA models, validating their ability to accurately capture the 

behaviour of the composite materials under consideration. 

6.3 FURTHER RESEARCH 

Basalt is a sustainable raw material sourced from volcanic stone, known for its fire 

resilience, high durability, dimensional stability, and resistance against moisture. Basalt 

reinforced bars, crafted from high-strength basalt fiber and epoxy resin through spinning, 

winding, surface coating, and compound molding, offer a novel building material 

characterized by exceptional strength, excellent acid and alkali resistance, and long-

lasting durability. 

When combined with carbon fibres, a multitude of potential applications emerge, 

particularly in aerospace components where the combination's high stiffness, strength, 

and thermal stability are highly desirable. Similarly, in automotive parts manufacturing, 
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the amalgamation of basalt and carbon fibres enables the production of lightweight yet 

robust components, thereby enhancing fuel efficiency and crash safety performance. 

For infrastructure and construction projects, the corrosion resistance and durability 

inherent in basalt composites make them ideal for structural reinforcement applications. 

Similarly, Basalt/E-glass/Epoxy composites offer advantages in automotive components, 

leveraging their thermal stability, impact resistance, and lightweight structure to 

improve vehicle performance and safety. 

In the case of Flax/E-glass/Epoxy composites, the combination excels in providing 

electrical, thermal, and acoustic insulation, with synergistic mechanical properties. While 

the high stiffness and strength of E-glass fibres contribute to structural integrity, the 

toughness and energy absorption capabilities of flax fibres enhance overall performance. 

The Flax/Carbon combination presents intriguing possibilities for the automotive 

industry, with flax fibres offering high elongation at break and superior energy 

absorption compared to carbon fibres. This combination can act as a crack arrester or 

bridging element, preventing crack propagation and shattering. Moreover, flax's lower 

density compared to carbon reduces weight, thereby enhancing fuel efficiency. 

It's noteworthy that both Basalt and Flax fibres can be harvested sustainably, supporting 

circular manufacturing practices. However, further research is needed to understand the 

energy requirements for fiber production and ensure sustainable sourcing practices. 

Additionally, the lower cost of natural fibres like flax, sourced from renewable plants, 

compared to carbon fibres derived from complex and energy-intensive processes, makes 

them an attractive option for composite manufacturing. 

In terms of simulations, studying fracture behaviour and thermal expansion in these 

combinations is crucial for assessing their capabilities in real-world industrial 

applications. Understanding fracture mechanics will provide insights into the 

performance and durability of hybrid composites, informing design and manufacturing 

processes for optimal results. A broader spectrum of fibre volume fractions is sought, 

encompassing both the overall fibre volume fraction of the fibres based on commonly 

used values (0.30 < 𝑉𝑓 < 0.70), and the ability to adjust the volume fraction of each 

individual fiber type, such as Fiber1 and Fiber2 (For example: 𝑉𝑓 = 0.60; 𝑉𝑓1 = 0.25 , 

𝑉𝑓2 = 0.35). Regarding the modelling approach, improvement could be made by replacing 
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RUCs by RVEs, or including eccentricities withing the RUC, in order to ‘represent’ the 

randomness of real composites. 
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INITIAL PROJECT GANTT CHART: INITIAL PLAN AND REFLECTIONS 

INITIAL PLAN 

As mentioned in the project’s title, my individual project will be focused on the microscale 

of the fibre-hybrid reinforced polymer composites. This is a computational-driven 

project. Therefore, knowledge in certain software and programmes will be required. 

Moreover, ABAQUS will be utilized for modelling and testing of such fibre-hybrid 

composites, followed by a complimentary programming language such as Python, to 

handle, collect and plot extensive data. Therefore, unsupervised learning regarding the 

software of choice will be required. Parallel, literature review and background research 

will be expected to identify gaps regarding fibre-hybrid reinforced polymer composites 

and locate a focus of interest. After discussing with supervisor Kali Katnam, 

demonstrating general knowledge of the micromechanics of such composites is as 

desired as filling gaps in the research community to achieve a feasible final report. 

Enumerating the initial objectives follows:  

1. Describe the structure of the composites to introduce the micro-scale of such.  

2. Analyse the behaviour of the composites when transverse tensile, compressive 

and shear stress is applied to both individual fibres and conglomerates of fibre and 

polymer such as residual stress shrinkage. 

3. Compare the behaviour of the composites when different volume fraction of 

different fibres is used like stiffness strength. 

4. Locate limitations of each composite, individual fibres, and polymers. 

5. Identify manufacturing defects/limits such as porosity and change in temperature 

for different fibre-hybrid composites. 

To have a better understanding of the approach of the project, the following questions 

will complement the objectives and description of the report: 

1. What are the gaps within the studies related to the micromechanics of fibre-hybrid 

reinforced polymer composites? 

2. What are the uses of such composites, what combinations of different fibres have 

been used and which ones have stayed undiscovered or untested? 
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3. What are the limitations of currently used composites and what could be the 

limitations of undiscovered composites? 

4. What are the limitations during the manufacturing of such composites? 

it is worth remarking that previous objectives/questions have been described from a 

weak base of understanding of the topic, and objectives and questions might be subjected 

to change as the weeks progresses and either advise from my supervisor reaches myself, 

information ‘gaps’ are identified and/or crucial information is missing or if the 

project lacks depth. 

REFLECTIONS 

The initial Project Gantt Chart was swiftly created in the early weeks of Semester 1 to 

establish a framework for future iterations. However, due to the limited understanding 

of both the project and the semester's activities and assessments, the divisions and sub-

divisions of tasks appear vague and ambiguous. The project's tasks are broadly 

categorized into four sections: 

• Weekly Meetings: A standard 30-minute weekly meeting was set up initially, 

subject to adjustments as workload and schedules evolve throughout the 

academic year. The aim was to maintain records of these meetings over time. 

• Composite Modeling: There was a basic grasp of Modeling using Abaqus Standard 

and Python Scripts, resulting in a somewhat vague breakdown of tasks necessary 

for completing the Modeling of composites. 

• Analysis: Similarly, due to the unfamiliarity with FEA Software and Modeling 

composite materials, there's a lack of detailed steps for completing the analysis. 

• Reporting/Deliverables: The deadlines provided by the 'Individual Project' 

module coordinators were incorporated as the final section of the Gantt chart, 

outlining the project's deliverables. 

Overall, while the initial representation of time and project management is lacking in 

specificity, it serves as a starting point for continuous improvement as I immerses 

themselves in the academic year 2023-2024. 
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PROPOSAL GANTT CHART: REFLECTIONS 
 

As time progressed, the coursework deadlines for Semester 1 were finalized and 

communicated to students, providing valuable insights into the expected workload 

throughout the semester. This allowed us to plan effectively, considering the evaluations 

that were part of the planning process. Additionally, deeper learning about the 

dissertation unfolded, offering not only a better grasp of the project's structure but also 

highlighting the most challenging areas within it. 

Changes: 

• Wp1:  

o Literature Review: Working for the proposal submission, an almost 

complete literature was tried to be achieved, thus, the newer ‘Literature 

Review’ intends to show the subdivision within it for its completion, 

containing all the topics I should delve into for a better understanding of 

the project’s development. 

Version: Proposal  Version: Initial 
1.1 Literature Review  1.1 Literature 

Review 
1.1.1 Natural & Synthetic 

Fibers 

 
1.2 Background 

Research 
1.1.2 RUC vs RVE 

 
1.3 Identify Gaps  

1.1.3 PBC 
   

1.1.4 Homogenization 
   

1.1.5 Analytical Models 
   

1.3 Identify Gaps  
   

1.4 Set Aim & Objectives 
   

 

o Setting Aim & Objectives: The project plan and the milestone for 

completion were clearly articulated in the Aims & Objectives section of the 

Proposal report submitted in W7. This laid the groundwork for both the 

Methodology and Results & Discussion sections. 

• Wp2: 2D RUC Modeling: Following discussions with PhD student Giuseppe 

Romano and supervisor Kali-Babu Katnam and gaining insights into different 

approaches for modelling composite microstructures, particularly RUCs and/or 

RVEs, a modelling approach (RUC) was decided upon for this project. This 
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specificity is reflected in the change to 2.2. Initially, due to time constraints, only 

2D modelling was considered, with a plan to expand to 3D if time permitted. 

However, by the completion of the proposal, 3D simulation had not been added as 

it remained relatively unexplored. 

Additions: 

• Integration of Coursework: The Gantt Chart for Semester 1 now includes 

coursework, laboratories, and quizzes, represented by three different scales of 

grey depending on the quantity of activities scheduled for each week. The legend 

indicates that 1, 2, or 3 colours represent the workload, with various combinations 

depicting the workload distribution throughout the semester. 

  Evaluations: 1  

CW 

Lab 

Quiz 

 Evaluations: 2  

CW/CW CW/Lab 

Lab/Lab Lab/Quiz 

Quiz/Quiz Quiz/CW 

 Evaluations: 3 

CW/CW/CW CW/CW/Lab CW/CW/Quiz 

Lab/Lab/Lab Lab/Lab/CW Lab/Lab/Quiz 

Quiz/Quiz/Quiz Quiz/Quiz/CW Quiz/Quiz/Lab 

CW/Lab/Quiz 

 

In wrapping up this reflection, it's evident that there has been a substantial enhancement 

in the level of detail across all aspects of the Gantt Chart. There's a heightened awareness 

of the comprehensive workload necessary for a successful completion of Semester 1. 

Additionally, there's a glimpse into what needs to be accomplished for the individual 

project by Semester 2. 
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SEMESTER 2 GANTT CHART: REFLECTIONS 
 

As Semester 2 commenced, a clearer plan and allocation of the workload needed for 

project completion emerged. Consequently, a more refined and detailed description of 

tasks was outlined. This distribution not only afforded me a broader overview but also 

fragmented tasks into manageable segments that could be accommodated within the 

personal weekly calendar. This approach aimed to facilitate continuous progress and 

alleviate the workload strain, particularly as parallel coursework labs and quizzes 

intensified. Similar to previous reflections, a compilation of changes and additions is 

elaborated below, along with their respective rationales and objectives. 

Changes: 

As mentioned above, significant revisions have been made to the task breakdown in both 

the Modeling and Analysis sections of the Gantt Chart. These revisions signify an 

improved comprehension of the necessary steps for effectively executing both the 

Modeling and Simulation of the Composites, as well as identifying pertinent discussion 

points based on the obtained results, also referred to as 'Discussion/Analysis.' Below are 

detailed explanations behind these changes. 

Version: Draft  Version: Proposal 
Wp2 Modelling  Wp2 Build Model of 

Composites 
2.1 Unsupervised Learning    2.1 Unsupervised 

Learning  
2.2 Analytical Solver for Validation 

 
2.2 2D RUC Modelling 

2.3 Learning Python Scripts for 
RUC Mod. 

 
2.3 Testing and Results 

2.4 Mesh Sensitivity 
 

2.4 Graphing and 
comparing 

2.5 2D RUC Mod. & Collect Data 
   

2.6 3D RUC Mod. & Collect Data 
   

2.7 Validate Simulations 
   

     

Wp3  Analysis 
 

Wp3  Analysis 
3.1 Plotting of Results 

 
3.1 Data Analysis 

3.2 Discussion of Mesh Sensitivity 
 

3.2 Overall Analysis  

3.3 Discussion of Validation 
   

3.4 Discussion of Homogenised 
Properties 
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• Modelling: The task section in the Gantt Chart has been meticulously detailed, 

encompassing the understanding that unsupervised learning remains a consistent 

element throughout the project despite its widespread comprehension. Even 

minor aspects, such as refining the imaging of figures from Abaqus/Standard to 

enhance result quality in the report, are continuously learned and improved upon, 

underscoring the significance of seemingly subtle efforts. While a Python Script 

for the analytical method wasn't deemed necessary, dedicating early semester 

time to initiating this supplementary project facilitated data generation and 

collection as the project progressed. Incorporating Mesh Sensitivity and 

Validation, denoted as 2.4 and 2.7 respectively, became imperative for ensuring 

sound simulation practices, hence their inclusion. Acquiring proficiency in Python 

and understanding Macros within Abaqus/Standard was essential for adapting 

the Python Script sourced from GitHub for project purposes. Notably, the code 

itself is not included in this document, as it wasn't authored by the writer. 

Furthermore, the data collection for 2D and 3D RUCs was split into two sub-tasks 

(2.5 and 2.6) due to each model utilizing different code, necessitating separate 

time allocations for each task. 

• Analysis: Sub-task 3.1 for Analysis and Plotting was introduced to accommodate 

the considerable time needed for crafting custom figures, refining images from 

Abaqus/Standard simulations using MS PowerPoint, and mastering Origin Pro for 

generating Mesh Convergence plots and Spider Plots depicting the Homogenized 

properties of both Single and Hybrid-Fiber Composites. Like the modelling tasks, 

each sub-task necessitated thorough discussion to interpret simulation results, 

prompting a staggered division of tasks over time to alleviate the workload. 

Additions: 

• PhD Student Meeting: As depicted in the Gantt Chart, meetings with the PhD 

Student, Giuseppe Romano, became increasingly frequent towards the end of 

Semester 1 and continued throughout Semester 2. This adjustment was made 

based on the recognition that such meetings enhanced my performance within the 

project and increased my engagement, allowing me to stay on track with tasks and 

consistently receive valuable feedback across different project sections, thereby 

maximizing learning opportunities. 
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• Semester 2 Coursework: Similarly, the Coursework’s deadline week were added, 

and the Laboratories required for the successful completion of Semester 2, 

following the same legend to prior update ‘PROPOSAL GANTT CHART: 

REFLECTIONS’. 

 



SEMESTER 2 GANTT CHART WITH EXTERNAL INFLUENCES 
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SEMESTER 2 GANTT CHART WITH EXTERNAL INFLUENCES: REFLECTIONS 

 

Finally, the last update, where the same Gantt Chart of Semester 2 is kept equal with the 

exception of the addition of the society I am part of ‘Flight Sim’. The Flight Sim activities 

occupied part of my time across weeks 6 to 9, as preparation was required in order to 

complete a model for competition. The competition, called IT Flies 2024 was hosted at 

The University of Dayton, Ohio. Required travelling delaying dissertation task further. 

Despite this, I was able to complete my tasks as expected as work was done throughout 

the trip.  
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APPENDIX B: PYTHON SCRIPT FOR VALIDATION USING ANALYTICAL MODELS FOR 

SINGLE-FIBER COMPOSITES 

#Rule of Mixture & Chamis Models 

''' 

author: Juan Doval 

 

     x2          x2 |o   o| 

     |              |  o  |           RUC Model 

     |____ x1       |o   o| x1   

    / 

x3 / 

 

Variables 

E1 is the Longitudinal Elastic Modulus 

E2 is the Transversal Elastic Modulus 

 

G12 is in-plane shear modulus 

G23 is out of plane shear modulus 

 

v12 is in-plane Poisson's ratio 

 

V is volume fraction 

 

K23 is the plane strain bulk moduli 

 

Subscripts 

f is fiber 

m is matrix 

''' 

 

def rom(Em, Vf, E1f, vm, v12f, Gm, G12f, E2f, G23f): 

    E1=E1f*Vf+(1-Vf)*Em #E1 Longitudinal Elastic Modulus 

    E2=(E2f*Em)/(E2f*(1-Vf)+Em*Vf) #E2 Transversal Elastic Modulus 

    v12=v12f*Vf+(1-Vf)*vm #v12 in-plane Poisson's ratio 

    G23=Gm*(1/(1+((Gm/G23f)-1)*Vf))#G23 out-of plane shear modulus ROMm 

    v23=(E2/(2*G23))-1 #v23 out-of-plane Poisson's ratio, #Not capable of 

capturing tranverse isotropy due to poor representation to arrangement of 

fibers 

    G12=(G12f*Gm)/(G12f*(1-Vf)+Gm*Vf)#G12 in-plane shear modulus 

    #G12=Gm*(1/(1+((Gm/G12f)-1)*Vf))#G12 in-plane shear modulus ROMm 

    #K23=(K23f*Km)/(K23f*(1-Vf)+Km*Vf) #K23 in-plane strain bulk moduli 

    #K23o=E1/(4*((E1/E2)-v12**2)-(E1/G23)) #K23o out-of-plane strain bulk  

    print(f'ROM Values') 

    # print(f'in-plane strain bulk moduli: {K23:.3f} GPa') 

    #print(f'out-of-plane strain bulk modulus{K23o}') 

    #print(f'out-of-plane shear modulus{G23}') 
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    print_results(f'{E1:.3f}', f'{E2:.3f}', f'{v12:.3f}', f'{v23:.3f}', 

f'{G12:.3f}', f'{G23:.3f}') 

 

def chamis(Em, Vf, E1f, vm, v12f, Gm, G12f, E2f, G23f): 

    E1=Em+Vf*(E1f-Em) #No Vv as its assumed Void-Free 

    E2=Em/(1-(1-(Em/E2f))*Vf**(1/2)) 

    v12=vm+Vf*(v12f-vm) 

    G12=Gm/(1-(1-(Gm/G12f))*Vf**(1/2)) 

    G23=Gm/(1-(1-(Gm/G23f))*Vf**(1/2)) 

    v23=(E2/(2*G23))-1 #v23 out-of-plane Poisson's ratio, #Not capable of 

capturing tranverse isotropy due to poor representation to arrangement of 

fibers 

     

    print(f'Chamis Values') 

    # print(f'in-plane Shear Modulus: {G12:.3f}') 

    # print(f'out-of-plane Shear Modulus: {G23:.3f}') 

 

    print_results(f'{E1:.3f}', f'{E2:.3f}', f'{v12:.3f}', f'{v23:.3f}', 

f'{G12:.3f}', f'{G23:.3f}') 

 

def print_results(lem, tem, inv, outv, g12, g23): 

    print(f'Longitudinal Elastic Modulus: {lem} Gpa') 

    print(f'Transversal Elastic Modulus: {tem} GPa') 

    print(f'in-plane Poisson ratio: {inv}') 

    print(f'out-of-plane Poisson ratio: {outv}') 

    print(f'Longitudinal Shear Modulus: {g12} Gpa') 

    print(f'Transversal Shear Modulus: {g23} GPa') 

 

def select_fiber(fibers_material_properties): 

    # Fibers Dictionary 

    print('0: E-Glass, 1: Basalt, 2: Carbon Fiber, 3: Flax') 

    print('Choose a fiber material:') 

    for i in fibers_material_properties: 

        print(f'{i}: {fibers_material_properties[i]}') 

     

    selected_fibers_material = int(input("Enter the index of the fiber 

material: ")) 

 

    selected_fibers_properties = 

fibers_material_properties[selected_fibers_material] 

 

    return (selected_fibers_properties['E1f'], 

selected_fibers_properties['E2f'], selected_fibers_properties['v12f'], 

            selected_fibers_properties['K23f'], 

selected_fibers_properties['G12f'], selected_fibers_properties['G23f']) 
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def select_matrix(matrix_material_properties): 

    # Matrix Dictionary 

    print('0: Epoxy') 

    print('Choose a matrix material:') 

    for i in matrix_material_properties: 

        print(f'{i}: {matrix_material_properties[i]}') 

     

    selected_matrix_material = int(input("Enter the index of the matrix 

material: ")) 

     

    return (matrix_material_properties[selected_matrix_material]["Em"],  

            matrix_material_properties[selected_matrix_material]["vm"],  

            matrix_material_properties[selected_matrix_material]["Gm"],  

            matrix_material_properties[selected_matrix_material]["Km"]) 

 

def select_method(selection_choices): 

    print(selection_choices) 

    return int(input("Enter the index of the method: ")) 

 

def getVf(): 

    while True: 

        Vf = float(input("Enter Vf (between 0.45 and 0.65): ")) 

        if 0.45 <= Vf <= 0.65: 

            return Vf 

        else: 

            print("Vf must be between 0.45 and 0.65. Please try again.") 

 

def fiber_single(fibers_material_properties, matrix_material_properties): 

    

    E1f, E2f, v12f, K23f, G12f, G23f = 

select_fiber(fibers_material_properties) 

    Em, vm, Gm, Km = select_matrix(matrix_material_properties) 

    Vf = getVf() 

     

    # Matrix Volume Fraction 

    Vm=1-Vf 

     

    # Ask the user to choose the method 

    method = select_method( 

        """ 

          Choose a method:\n 

          1: Rule of Mixtures (ROM) \n 

          2: Chamis Method 

        """) 

    #Em, Vf, E1f, vm, v12f, Gm, G12f, E2f, G23f 

    if method == 1: 

       rom(Em=Em, Vf=Vf, E1f=E1f, vm=vm, v12f=v12f, Gm=Gm, G12f=G12f, E2f=E2f, 

G23f=G23f) 
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    elif method == 2: 

        chamis(Em=Em, Vf=Vf, E1f=E1f, vm=vm, v12f=v12f, Gm=Gm, G12f=G12f, 

E2f=E2f, G23f=G23f) 

    else: 

        print('Invalid Method Selection') 

 

def fiber_double(fibers_material_properties): 

    E1f1, E2f1, v12f1, K23f1, G12f1, G23f1 = 

select_fiber(fibers_material_properties) 

    E1f2, E2f2, v12f2, K23f2, G12f2, G23f2 = 

select_fiber(fibers_material_properties) 

    Em, vm, Gm, Km = select_matrix(matrix_material_properties) 

     

     

    print('Not finished') 

 

     

print(""" 

      Choose a Single Fiber or Fiber Hybrid: \n 

      "1: Single Fiber" \n 

      "2: Fiber Hybrid" 

      """) 

 

fibers_amount = int(input("Enter the type of composite: ")) 

     

fibers_material_properties = { 

        0: {'E1f': 73, 'E2f': 73, 'v12f': 0.23,'G12f': 30.2, 'G23f': 30.2, 

'K23f': 50},  # E-Glass 

        1: {'E1f': 89, 'E2f': 89,'v12f': 0.26, 'G12f': 21.7, 'G23f': 21.7, 

'K23f': 60},  # Basalt 

        2: {'E1f': 290, 'E2f': 21, 'v12f': 0.2, 'G12f': 14, 'G23f': 7.04, 

'K23f': 70},   # Carbon Fiber 

        3: {'E1f': 54.1, 'E2f': 7, 'v12f': 0.3, 'G12f': 3, 'G23f': 2, 'K23f': 

0}    # Flax 

} 

 

matrix_material_properties = { 

    0: {'Em': 4.30, 'vm': 0.35,'Gm': 1.29, 'Km': 3.0}  # Epoxy 

} 

 

if fibers_amount == 1: # Single Fiber 

    fiber_single(fibers_material_properties, matrix_material_properties) 

elif fibers_amount == 2: 

    fiber_double() 

    pass 

else: 

    print('Invalid Composite type') 

Fin 


